We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g.
View Article and Find Full Text PDFA model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets.
View Article and Find Full Text PDFThe HO(2) + HO(2) → H(2)O(2) + O(2) chemical reaction is studied using statistical rate theory in conjunction with high level ab initio electronic structure calculations. A new theoretical rate coefficient is generated that is appropriate for both high and low temperature regimes. The transition state region for the ground triplet potential energy surface is characterized using the CASPT2/CBS/aug-cc-pVTZ method with 14 active electrons and 10 active orbitals.
View Article and Find Full Text PDF