Publications by authors named "Dingxiang Chen"

Iron modified bio-adsorbents gained a lot of attention recently, especially some iron-contain wastes were employed for fabrication. However, the influence of indigenous impurities in wastes was merely investigated. In this study, red mud (RM), an iron-rich by-product was employed as source to prepare Fe modified hydrochar (RM@HC) by a facile hydrothermal method, and then employed for Cd(II) removal from wastewater.

View Article and Find Full Text PDF

Antibiotics and heavy metals often coexist as non-point-source contaminants in wastewater and their quite contrary physiochemical properties make their co-removal processes challenging. In this work, a bifunctional zero-valent iron-modified hydrochar derived from walnut peel (MWPHC) was synthesized, which was then applied for the simultaneous removal of tetracycline (TC) and Cu(II) from wastewater. Based on the characterizations, Fe species were successfully distributed on the surface of the walnut peel substrates.

View Article and Find Full Text PDF

In practical wastewater, cationic and anionic dyes usually coexist, while synergistic removal of these pollutants is difficult due to their relatively opposite properties. In this work, copper slag (CS) modified hydrochar (CSHC) was designed as functional material by the one-pot method. Based on characterizations, the Fe species in CS can be converted to zero-valent iron and loaded onto a hydrochar substrate.

View Article and Find Full Text PDF

Red mud (RM) is a byproduct of various processes in the aluminum industry and has recently been utilized for synthesizing RM-modified biochar (RM/BC), which has attracted significant attention in terms of waste reutilization and cleaner production. However, there is a lack of comprehensive and comparative studies on RM/BC and the conventional iron-salt-modified biochar (Fe/BC). In this study, RM/BC and Fe/BC were synthesized and characterized, and the influence on environmental behaviors of these functional materials with natural soil aging treatment was analyzed.

View Article and Find Full Text PDF

Cost-effectively improving the performance of biochar is essential for its large-scale practical application. In this work, the agro-industrial by-products copper slag and tobacco straw were employed for the preparation of modified biochar (CSBC). The obtained CSBC exhibited satisfactory capacity on Se(IV) immobilization of 190.

View Article and Find Full Text PDF

The widely spread chromium (Cr) contamination is rising environmental concerns, while the reutilization of agro-industrial by-products are also urgently demanded due to their potential risks. In this study, we prepared the integrated micro-electrolysis composites (IMC) through a facile one-pot method with red mud and rice straw. The effects of components relatively mass ratios as well as pyrolysis temperature were analyzed.

View Article and Find Full Text PDF