Publications by authors named "Dingwall C"

Programmed axon degeneration (AxD) is a key feature of many neurodegenerative diseases. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of AxD, preventing it from initiating the rapid local NAD+ depletion and metabolic catastrophe that precipitates axon destruction. Because these components of the AxD pathway act within neurons, it was also assumed that the timetable of AxD was set strictly by a cell-intrinsic mechanism independent of neuron-extrinsic processes later activated by axon fragmentation.

View Article and Find Full Text PDF

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans.

View Article and Find Full Text PDF

Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome.

View Article and Find Full Text PDF

SARM1 is an inducible TIR-domain NAD hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD hydrolase activity.

View Article and Find Full Text PDF

Alternative RNA splicing results in the translation of diverse protein products arising from a common nucleotide sequence. These alternative protein products are often functional and can have widely divergent actions from the canonical protein. Studies in humans and other vertebrate animals have demonstrated that alternative splicing events increase with advanced age, sometimes resulting in pathological consequences.

View Article and Find Full Text PDF

Background: Matrix metalloproteinases (MMPs) are a large family of regulatory enzymes that function in extracellular matrix degradation and facilitate a diverse range of cellular processes. Despite the significant focus on the activities of MMPs in human disease, there is a lack of substantial knowledge regarding their normal physiological roles and their role in regulating aspects of stem cell biology. The freshwater planarian Schmidtea mediterranea (S.

View Article and Find Full Text PDF

In Canada, cultural safety (CS) is emerging as a theoretical and practice lens to orient health care services to meet the needs of Aboriginal people. Evidence suggests Aboriginal peoples' encounters with health care are commonly negative, and there is concern that these experiences can contribute to further adverse health outcomes. In this article, we report findings based on participatory action research drawing on Indigenous methods.

View Article and Find Full Text PDF

Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related.

View Article and Find Full Text PDF

Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis.

View Article and Find Full Text PDF

The copper chaperone for superoxide dismutase (CCS) binds to both the β-site AβPP cleaving enzyme (BACE1) and to the neuronal adaptor protein X11α. BACE1 initiates AβPP processing to produce the amyloid-β (Aβ) peptide deposited in the brains of Alzheimer's disease patients. X11α also interacts directly with AβPP to inhibit Aβ production.

View Article and Find Full Text PDF

Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer's disease. Herein, is described a series of potent inhibitors based on an hydroxyethylamine (HEA) transition state mimetic template. These inhibitors interact with the non prime side of the enzyme using a novel edge-to-face interaction with Arg-296.

View Article and Find Full Text PDF

Epidemiological studies have shown an association between statin use and a decreased risk of dementia. However, the mechanism by which this beneficial effect is brought about is unclear. In the context of Alzheimer's disease, at least three possibilities have been studied; reduction in amyloid beta peptide (Abeta) production, the promotion of alpha-secretase cleavage and positive effects on neurite outgrowth.

View Article and Find Full Text PDF

Our first generation of hydroxyethylamine transition-state mimetic BACE-1 inhibitors allowed us to validate BACE-1 as a key target for Alzheimer's disease by demonstrating amyloid lowering in an animal model, albeit at rather high doses. Finding a molecule from this series which was active at lower oral doses proved elusive and demonstrated the need to find a novel series of inhibitors with improved pharmacokinetics. This Letter describes the discovery of such inhibitors.

View Article and Find Full Text PDF

Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer's disease. We have recently disclosed a series of transition-state mimetic BACE-1 inhibitors showing nanomolar potency in cell-based assays. Amongst them, GSK188909 (compound 2) had favorable pharmacokinetics and was the first orally bioavailable inhibitor reported to demonstrate brain amyloid lowering in an animal model.

View Article and Find Full Text PDF

Our first generation of hydroxyethylamine BACE-1 inhibitors proved unlikely to provide molecules that would lower amyloid in an animal model at low oral doses. This observation led us to the discovery of a second generation of inhibitors having nanomolar activity in a cell-based assay and with the potential for improved pharmacokinetic profiles. In this Letter, we describe our successful strategy for the optimization of oral bioavailability and also give insights into the design of compounds with the potential for improved brain penetration.

View Article and Find Full Text PDF

BACE-1 inhibition has the potential to provide a disease-modifying therapy for the treatment of Alzheimer's disease. Optimization of a first generation of BACE-1 inhibitors led to the discovery of novel hydroxyethylamines (HEAs) bearing a tricyclic nonprime side. These derivatives have nanomolar cell potency and are orally bioavailable.

View Article and Find Full Text PDF

Chronic hydrocephalus (CH) is a neurological disease characterized by increased cerebrospinal fluid volume and pressure that is often associated with impaired cognitive function. By and large, CH is a complex and heterogeneous cerebrospinal fluid (CSF) disorder where the exact site of brain insult is uncertain. Several mechanisms including neural compression, fiber stretch, and local or global hypoxia have been implicated in the underlying pathophysiology of CH.

View Article and Find Full Text PDF

This article is focusing on further optimization of previously described hydroxy ethylamine (HEA) BACE-1 inhibitors obtained from a focused library with the support of X-ray crystallography. Optimization of the non-prime side of our inhibitors and introduction of a 6-membered sultam substituent binding to Asn-294 as well as a fluorine in the C-2 position led to derivatives with nanomolar potency in cell-based assays.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibition of BACE-1 could lead to new treatments for Alzheimer's disease.
  • The study involved creating potential drug candidates with the help of X-ray crystallography.
  • Discovered inhibitors effectively reduced amyloid production in laboratory tests.
View Article and Find Full Text PDF

This paper describes the discovery of non-peptidic, potent, and selective hydroxy ethylamine (HEA) inhibitors of BACE-1 by replacement of the prime side of a lead di-amide 2. Inhibitors with nanosmolar potency and high selectivity were identified. Depending on the nature of the P(1)(') and P(2)(') substituents, two different binding modes were observed in X-ray co-crystal structures.

View Article and Find Full Text PDF

The amyloidogenic processing pathway of the APP (amyloid precursor protein) generates Abeta (amyloid beta-peptide), the major constituent in Alzheimer's disease senile plaques. This processing is catalysed by two unusual membrane-localized aspartic proteinases, beta-secretase [BACE1 (beta-site APP-cleaving enzyme 1)] and the gamma-secretase complex. There is a clear link between APP processing and copper homoeostasis in the brain.

View Article and Find Full Text PDF

Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease defined by motor neuron loss. Transgenic mouse models show features that closely mimic those seen in the clinical situation, reflected in the molecular changes observed in mouse models and in tissues from patients. We report a dramatic increase in the expression of amyloid precursor protein (APP) in the hindlimb muscles, but not the spinal cord of the G93A transgenic mouse model, significantly before the appearance of clinical abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic analysis of familial Alzheimer's disease shows that presenilin mutations lead to toxic Abeta secretion and may also affect tau hyperphosphorylation and neurodegeneration through gamma-secretase-independent pathways.
  • In a Drosophila model for tau-induced neurodegeneration, presenilin and nicastrin were found to prevent tau toxicity by influencing the PI3K/Akt/GSK3beta phosphorylation pathway, while aph-1 affected aPKC/PAR-1 activities.
  • Interestingly, inhibiting gamma-secretase activity did not disrupt these kinase pathways or cause abnormal tau phosphorylation, highlighting new molecular functions of gamma-secretase components in neuronal degeneration related to Alzheimer's disease.
View Article and Find Full Text PDF

The amyloidogenic pathway leading to the production and deposition of Abeta peptides, major constituents of Alzheimer disease senile plaques, is linked to neuronal metal homeostasis. The amyloid precursor protein binds copper and zinc in its extracellular domain, and the Abeta peptides also bind copper, zinc, and iron. The first step in the generation of Abeta is cleavage of amyloid precursor protein by the aspartic protease BACE1.

View Article and Find Full Text PDF