Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disease with limited targeted therapy options. Overexpression of B-cell lymphoma/leukemia 11B is frequently observed in T-ALL and contributes to leukemogenesis. Knockdown of BCL11B inhibits T-ALL cell proliferation and induces apoptosis, making it a potential therapeutic target.
View Article and Find Full Text PDFGemcitabine (GEM) is commonly used as the first-line chemotherapeutic agent for treating pancreatic cancer (PC) patients. However, drug resistance is a major hurdle in GEM-based chemotherapy for PC. Recent studies have shown that pyroptosis, a type of programmed death, plays a significant regulatory role in cancer development and therapy.
View Article and Find Full Text PDFDrug resistance and poor treatment response are major obstacles to the effective treatment of acute myeloid leukemia (AML). A deeper understanding of the mechanisms regulating drug resistance and response genes in AML is therefore urgently needed. Our previous research has highlighted the important role of nuclear factor E2-related factor 2 (NRF2) in AML, where it plays a critical role in detoxifying reactive oxygen species and influencing sensitivity to chemotherapy.
View Article and Find Full Text PDFCaspase-1 (CASP1)-mediated classical pyroptosis plays a key role in cancer development and management, however, the role of CASP1 and its regulation has not yet been documented for acute promyelocytic leukemia (APL). Here, we found that CASP1/GSDMD had lower expression in patients with APL and most other subtypes of primary de novo acute myeloid leukemia (AML) and was increased in all-trans-retinoic acid (ATRA)-treated APL cells. We showed that ATRA increases and activates CASP1 to trigger the pyroptosis and differentiation of APL cells.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) is an aggressive heterogeneous hematological malignancy with remarkably heterogeneous outcomes. This study aimed to identify potential biomarkers for AML risk stratification via analysis of gene expression profiles.
Methods: RNA sequencing data from 167 adult AML patients in the Cancer Genome Atlas (TCGA) database were obtained for overall survival (OS) analysis, and 52 bone marrow (BM) samples from our clinical center were used for validation.
Regulated cell death (RCD) is essential for maintaining cell homeostasis and preventing diseases. Besides classical apoptosis, several novel nonapoptotic forms of RCD including NETosis, pyroptosis, ferroptosis, and cuproptosis have been reported and are increasingly being implicated in various cancers and inflammation. Disulfiram (DSF), an aldehyde dehydrogenase inhibitor, has been used clinically for decades as an anti-alcoholic drug.
View Article and Find Full Text PDFSustained expression of programmed cell death receptor-1 (PD-1) is correlated with the exhaustion of T cells, and blockade of the PD-1 pathway is an effective immunotherapeutic strategy for treating various cancers. However, response rates are limited, and many patients do not achieve durable responses. Thus, it is important to seek additional strategies that can improve anticancer immunity.
View Article and Find Full Text PDFT-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are characterized by inferior treatment effects, high heterogeneity, poor prognosis, and a lack of specific therapeutic targets and drugs to improve outcome. Disulfiram (DSF) is a drug used to clinically control alcoholism that has recently been shown to be cytotoxic for multiple cancers. However, the underlying effects and mechanisms of DFS treatment in patients with T-cell malignancies are not well characterized.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) was confirmed to be associated with hematopoietic insufficiency, as well as abnormal proliferation, differentiation or survival of myeloid progenitors. Multiple studies reported that microRNA-204 (miR-204) and Hepatocyte growth factor (HGF) played important roles in types of cancers. However, the potential molecular regulatory mechanism between miR-204 and HGF in AML remains to be further defined.
View Article and Find Full Text PDFEnucleation is a key event in mammalian erythropoiesis responsible for the generation of enucleated reticulocytes. Although progress is being made in developing mechanistic understanding of enucleation, our understanding of mechanisms for enucleation is still incomplete. The MAPK pathway plays diverse roles in biological processes, but its role in erythropoiesis has yet to be fully defined.
View Article and Find Full Text PDF