Publications by authors named "Dingliang Chen"

Article Synopsis
  • Current methods for detecting machinery compound faults struggle due to the lack of available training data, as collecting sufficient compound fault samples is often impractical in engineering.
  • The paper introduces a zero-shot attribute-embedded model (ZSAECFD), which allows for diagnosing unseen compound faults using only single fault data by constructing attribute prototypes and utilizing a new activation function, F-sigmoid.
  • The model demonstrates high diagnostic accuracy—81.82% for bearing faults and 88.17% for gear faults—showing its effectiveness compared to traditional methods, even without training on compound fault data.
View Article and Find Full Text PDF

As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis.

View Article and Find Full Text PDF

As one of the most important components of machinery, once the bearing has a failure, serious catastrophe may happen. Hence, for avoiding the catastrophe, it is valuable to predict the remaining useful life (RUL) of bearing. Health indicators (HIs) construction plays a greatly important role in the data-driven RUL prediction.

View Article and Find Full Text PDF