We fabricated high-quality CsPbBr perovskite nanonet films with the assistance of polystyrene spheres, and constructed self-powered photodetectors (PDs) with an ITO/SnO/CsPbBr/carbon structure. By passivating the nanonet with different concentrations of 1-butyl-3-methylimidazolium bromide (BMIMBr) ionic liquid, we found that as the concentration of BMIMBr increases, the dark current of the device first decreases and then gradually increases, while the photocurrent remains essentially unchanged. Finally, the PD with 1 mg mL BMIMBr ionic liquid exhibited the best performance with a switch ratio of about 1.
View Article and Find Full Text PDFBecause of its stable chemical properties and wide band gap, CsPbCl perovskite has shown great application prospects in ultraviolet photodetectors (UPDs). However, the poor solubility of CsCl in organic solvents impedes the fabrication of high-quality CsPbCl films. Herein, we introduced an A-site substitute route for fabricating a high-quality CsPbCl microcrystalline (MC) film by spin-coating cesium acetate on a MAPbCl MC film followed by a high-temperature annealing process.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2021
For most commercial photodetectors (PDs), incident light is illuminated from the top or side of the device, but the opaque electrode (gold, copper, or aluminum, etc.) on the top will block part of the light from entering, wasting the efficiency of light utilization. Herein, to solve this issue, we introduced perovskite nanonet PDs with a hollow vertical structure by using a polystyrene microsphere template.
View Article and Find Full Text PDFThe carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation.
View Article and Find Full Text PDFCompared with a single nanowire (NW) or NW array, the simpler preparation process of an NW network (NWN) enables it to be fabricated in large-scale, flexible, and wearable applications of photodetectors (PDs). However, the NWN behaves many microinterfaces (MIs) between NWs, seriously limiting the device performance and stability. Here, we demonstrate a welding strategy for an MAPbI NWN, which enhances the crystallinity of the NWN and enhances the radial transmission of photogenerated carriers, leading to a better device performance with ultrahigh stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
Organic-inorganic hybrid lead halide perovskites have attracted much attention in the photoelectric field due to their excellent characteristics, such as a tunable band gap, simple fabrication process, and high photoelectric conversion efficiency. However, the commercialization of the perovskite-based devices still faces many challenges, one of which is the inclusion of the toxic lead. Herein, we demonstrated a two-step solution method for synthesizing tin-based perovskite nanowires (NWs) with their application in photodetectors (PDs).
View Article and Find Full Text PDFAll-inorganic metal halide perovskites have attracted great interest in recent years due to their good device performance with higher thermal stability than that of their organic-inorganic perovskite counterparts. However, the all-inorganic perovskite polycrystalline films prepared by the conventional spin-coating method possess many pinholes, nonuniform surface with many small crystals, and irregular agglomerates, limiting their device performance. Herein, we introduced a monolayer nano-polystyrene (PS) sphere confined growth method for obtaining CsPbBr3 nanonet films (NFs) with ordered nanostructures grown in the preferred (110) orientation, which is beneficial for the charge carrier transport and the light-harvesting efficiency.
View Article and Find Full Text PDFPredicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy.
View Article and Find Full Text PDF