Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH), followed by coagulation in aqueous NaSO solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process.
View Article and Find Full Text PDFBamboo, featuring fast growth rate and high cellulose content, is considered to be one of the most attractive feedstocks for degradable bio-materials as a substitute for plastics. However, those was limited to the fields of bamboo structural materials mainly by physical processes. Herein, we report a facile continuous wet extrusion strategy for scalable manufacturing of anisotropic regenerated cellulose films in alkali/urea aqueous solution for the first time.
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
Cellulose nanofibers (CNF) based films are promising packaging materials, but the lack of special functions (especially UV-shielding property) usually restrict their further applications. In this work, MXene was incorporated into the CNF film by a direct solvent volatilization induced film forming method to study its UV-shielding property for the first time, which avoided the using of a vacuum filtration equipment. The composite films containing glycerin could be folded repeatedly without breaking, showing good flexibility.
View Article and Find Full Text PDFThis study developed an aqueous solution blending and freeze-drying method to prepare an antibacterial shape memory foam (WPPU/CNF) based on waterborne PHMG-polyurethane and cellulose nanofibers derived from bamboo in response to the increasing demand for environmentally friendly, energy conserving, and multifunctional foams. The obtained WPPU/CNF composite foam has a highly porous network structure with well-dispersed CNFs forming hydrogen bonds with the WPPU matrix, which results in a stable and rigid cell skeleton with enhanced mechanical properties (80 KPa) and anti-abrasion ability. The presence of guanidine in the polyurethane chain endowed the WPPU/CNF composite foam with an instinctive and sustained antibacterial ability against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFHemicellulose removal from bleached bamboo pulp is key to produce qualified dissolving pulps. In this work, alkali/urea aqueous solution was firstly applied to remove hemicellulose in bleached bamboo pulp (BP). The effect of urea usage, time and temperature on the hemicellulose content of BP was studied.
View Article and Find Full Text PDFBleached bamboo pulp, as a kind of natural cellulose, has received significant attention in the field of biomass materials due to its advantages of environmental protection and the abundance of raw materials. Low-temperature alkali/urea aqueous system is a green dissolution technology for cellulose, which has promising application prospects in the field of regenerated cellulose materials. However, bleached bamboo pulp, with high viscosity average molecular weight (η) and high crystallinity, is difficult to dissolve in an alkaline urea solvent system, restraining its practical application in the textile field.
View Article and Find Full Text PDFLead ion (Pb) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
The interfacial bonding and structure at the nanoscale in the polymer-clay nanocomposites are essential for obtaining desirable material and structure properties. Layered nanocomposite films of cellulose nanofibrils (CNFs)/montmorillonite (MTM) were prepared from the water suspensions of either CNFs bearing quaternary ammonium cations (Q-CNF) or CNFs bearing carboxylate groups (TO-CNF) with MTM nanoplatelets carrying net surface negative charges by using vacuum filtration followed by compressive drying. The effect of the ionic interaction between cationic or anionic charged CNFs and MTM nanoplatelets on the structure, mechanical properties, and flame retardant performance of the TO-CNF/MTM and Q-CNF/MTM nanocomposite films were studied and compared.
View Article and Find Full Text PDFTwo-dimensional (2D) nanomaterials hold considerable potential in reforming the energy storage performance, and the efficient production of high-performance 2D energy storage materials through facile and sustainable approaches is highly desirable. Herein, for the first time, large-area and ultrathin carbon nanosheets doped with N/O were constructed by stripping bulk chitin via a "top-down" method. On the basis of the specific layered structure composed of nanofibers, chitin samples after removing the protein and CaCO could be efficiently exfoliated into nanosheets (CNs) via the hydrothermal method, which were then carbonized into N/O co-doped porous carbon nanosheets (CCNs).
View Article and Find Full Text PDFRecently, nanostructured porous carbons are attracting significant interest in various important applications. However, a green and innovative method to fabricate hierarchically porous-structured carbon is still a challenge. In the present work, hierarchically porous carbon microspheres (HCMs) were prepared by pyrolyzing the chitin microspheres fabricated from a chitin/chitosan blend solution, in which chitosan was used as a forming agent of nanopores/nanochannels to construct the microspheres.
View Article and Find Full Text PDFA previous study has demonstrated a progression in the nerve regeneration by polyaniline/cellulose (PANI/RC), although the underlying mechanism was not elucidated. In the present study, regenerated nerves were investigated, using histological techniques, functional assays and western blot analysis. The triceps surae muscle weight ratio percentages of the sham, regenerated cellulose (RC) and the PANI/RC groups were 38.
View Article and Find Full Text PDFAlthough purified and synthesized Cecropin A-magainin 2 (CAMA-syn) shows potent antibacterial activity in vitro, its ability to inhibit bacteria within mammal cells mediated by virus vector has not yet been investigated. To enhance its antimicrobial potential and reduce systemic side effects, it would be desirable to deliver CAMA-syn in macrophages by adenovirus vector. In this study,recombinant adenovirus Ad-MSP-CAMA/GFP were used to infect macrophages RAW264.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
Developing eco-friendly and low-cost electronics is an effective strategy to address the electronic waste issue. In this study, transparent cellulose nanopaper (T-paper) and polylactic acid (PLA) electret were used to construct a biodegradable and transparent paper-based electret nanogenerator. The nanogenerator could be assembled with paper products to form a self-powered smart packaging system without impairing the appearance, due to the high transparency and desirable output performance.
View Article and Find Full Text PDFConducting polymers have emerged as frontrunners to be alternatives for nerve regeneration, showing a possibility of the application of polyaniline (PANI) as the nerve guidance conduit. In the present work, the cellulose hydrogel was used as template to in situ synthesize PANI via the limited interfacial polymerization method, leading to one conductive side in the polymer. PANI sub-micrometer dendritic particles with mean diameter of ∼300 nm consisting of the PANI nanofibers and nanoparticles were uniformly assembled into the cellulose matrix.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2003
With the development of brain-computer interface (BCI) technology, researchers are now attempting to put current BCI techniques into practical application. This paper presents an environmental controller using a BCI technique based on steady-state visual evoked potential. The system is composed of a stimulator, a digital signal processor, and a trainable infrared remote-controller.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2002
This paper presents a brain-computer interface (BCI) that can help users to input phone numbers. The system is based on the steady-state visual evoked potential (SSVEP). Twelve buttons illuminated at different rates were displayed on a computer monitor.
View Article and Find Full Text PDF