Publications by authors named "Ding-Zheng Lin"

In this paper, we proposed an optical structure to enhance the collimation and uniformity of 405 nm LED backlight modules. The structure is called a single-sided structure collimation film (SSSCF), which consists of a lenticular lens array, slit apertures, and a highly reflective coating surface. A lenticular lens array with slit apertures converts the angle of diffusive incident light into collimated light.

View Article and Find Full Text PDF

This research aimed to enhance the performance of surface-enhanced Raman scattering (SERS) substrates through the implementation of periodic nanostructures, effectively increasing surface area and uniformity. The approach involved a two-step process: initially, magnetron sputtering was employed to minimize the Raman background signal from the polymer substrate, and subsequently, the microplasma nanoparticle coating method was utilized to augment the presence of silver nanoparticles (AgNPs) for enhancing SERS efficacy. The outcome revealed several key findings: a coefficient of variation (CV) of approximately 8% for individual substrates (3 × 3 cm), a CV of 6% between different fabrication batches, and a sustained signal strength of 85% over a storage period exceeding two months in a moisture-proof enclosure, thus meeting commercial product standards.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful measurement method in the chemical analysis field. It is much superior to bulk Raman owing to the enhancement of signal sensitivity from the SERS substrate. Nevertheless, the delicate SERS substrates are overpriced, which results in the difficulty of universal measurements.

View Article and Find Full Text PDF

We developed an automated Raman measurement platform for the customized design of various solution containers. We used the software LabVIEW to integrate the entire automatic measurement process. By designing an intuitive human-machine interface, the user only needs to input a few setting parameters and can efficiently operate the machine in automation mode for an array of solutions containing real or counterfeit liquors such as kaoliang liquor, vodka, rum, gin, rice wine, ethanol, and methanol.

View Article and Find Full Text PDF

Uniformity, sensitivity, reproducibility, and cost are the critical parameters of practical surface-enhanced-Raman-spectroscopy (SERS) substrates. Herein, we proposed a High-Aspect-Ratio-Nano-Pillar-Array (HARNPA) substrate deposited silver by physical vapor deposition (PVD) methods (e.g.

View Article and Find Full Text PDF

Vat photopolymerization (VPP) is an effective additive manufacturing (AM) process known for its high dimensional accuracy and excellent surface finish. It employs vector scanning and mask projection techniques to cure photopolymer resin at a specific wavelength. Among the mask projection methods, digital light processing (DLP) and liquid crystal display (LCD) VPP have gained significant popularity in various industries.

View Article and Find Full Text PDF

3D printing techniques have great potential in the direct fabrication of microfluidic and many kinds of molds, such as dental and jewelry models. However, the resolution, surface roughness, and critical dimension uniformity of 3D printing objects are still a challenge for improvement. In this article, we proposed a 405nm light emitting diode (LED) backlight module based on stacks of structured films, and the full width half maximum (FWHM) of the angular distribution of this module is reduced to less than ± 15°.

View Article and Find Full Text PDF

We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process.

View Article and Find Full Text PDF

Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size.

View Article and Find Full Text PDF

We demonstrate three-dimensional surface-enhanced Raman spectroscopy (SERS) substrates formed by accumulating plasmonic nanostructures that are synthesized using a DNA-assisted assembly method. We densely immobilize Au nanoparticles (AuNPs) on polymer beads to form core-satellite nanostructures for detecting molecules by SERS. The experimental parameters affecting the AuNP immobilization, including salt concentration and the number ratio of the AuNPs to the polymer beads, are tested to achieve a high density of the immobilized AuNPs.

View Article and Find Full Text PDF

We present a facile and cost-effective manner to fabricate a highly sensitive and stable surface enhanced Raman scattering (SERS) substrate. First, a silicon nanowire array (SiNWA) is tailored by metal-assisted chemical etching (MaCE) method as a scaffold of the desired SERS substrate. Next, with an oblique angle deposition (OAD) method, optimized gold nanoparticles (AuNPs) are successfully decorated on the surface of the SiNWA.

View Article and Find Full Text PDF

We demonstrate an approach that utilizes DNA-functionalized gold nanorods (AuNRs) in an indirect competitive assay format to increase the spectra shift in localized surface plasmon resonance (LSPR) biosensing. We use interferon gamma (IFN-γ) as a model analyte to demonstrate the feasibility of our detection method. The LSPR chips with periodic gold nanodot arrays are fabricated using a thermal lithography process and are functionalized with IFN-γ aptamers for detection.

View Article and Find Full Text PDF

The plasmonic 2D W-shape and 3D inverted pyramidal nanostructures with and without the tips are studied. The effects of the tip height and tip tilt angle on the near field enhancement and far field radiation pattern are discussed in this paper. The localized hot spots are found around the pits and the radiation pattern can be affected by the tip structures.

View Article and Find Full Text PDF

We examined the optical properties such as propagation modes, focal length, side lobes, etc. of metallic subwavelength annular apertures (SAA) and used finite-difference time-domain (FDTD) simulation to compare our experimental findings. Using two different metals, silver and tungsten, we examined the different optical transmission properties of the two metallic SAA structures.

View Article and Find Full Text PDF

A subwavelength annular aperture (SAA) made on metallic film and deposited on a glass substrate was fabricated by electron-beam lithography (EBL) and which was followed by a metal lift-off process to generate a long propagation range Bessel beam. We propose tuning the focal length and depth of focus (DOF) by changing the diameter of the SAA. We used finite-difference time domain (FDTD) simulations to verify our experimental data.

View Article and Find Full Text PDF

We propose a direct experimental set-up to observe the directional beaming effect of surface plasmon. A single diffracted beam from an asymmetric-sided surface corrugation is demonstrated. A single subwavelength slit with an asymmetric structure was fabricated using a focused ion beam (FIB) onto a metal surface with a glass substrate.

View Article and Find Full Text PDF