Publications by authors named "Ding Weng"

Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect.

View Article and Find Full Text PDF

Micro/nanostructures have garnered significant attention and widespread applications in areas such as photocatalysis, coated fabrics, microchips, and sensors. However, high-resolution and multifunctional micro/nanostructures fabrication remains a great challenge. In this work, a novel self-assembly-femtosecond laser processing for the regular micro squares and nano bumps surface on steel substrates is proposed, and a great potential in the field of anti-icing/de-icing and self-cleaning is demonstrated.

View Article and Find Full Text PDF

The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet.

View Article and Find Full Text PDF

Micro/nanospherical lens photolithography (SLPL) constitutes an efficient and precise micro/nanofabrication methodology. It offers advantages over traditional nanolithography approaches, such as cost-effectiveness and ease of implementation. By using micrometer-sized microspheres, SLPL enables the preparation of subwavelength scale features.

View Article and Find Full Text PDF

Intelligent surfaces with reversibly switchable wettability have recently drawn considerable attention. One typical strategy to obtain such a surface is to change the surface chemistry or the microstructure. Herein, we report a new smart surface for which the wettability was controlled by both the surface chemistry and microstructure.

View Article and Find Full Text PDF

Intracellular delivery and genetic modification have brought a significant revolutionary to tumor immunotherapy, yet existing methods are still limited by low delivery efficiency, poor throughput, excessive cell damage, or unsuitability for suspension immune cells, specifically the natural killer cell, which is highly resistant to transfection. Here, we proposed a vibration-assisted nanoneedle/microfluidic composite system that uses large-area nanoneedles to rapidly puncture and detach the fast-moving suspension cells in the microchannel under vibration to achieve continuous high-throughput intracellular delivery. The nanoneedle arrays fabricated based on the large-area self-assembly technique and microchannels can maximize the delivery efficiency.

View Article and Find Full Text PDF

The underwater nonwetted state on a superhydrophobic surface is hardly maintained in flowing water because the entrapped gas dissolves into the water or is carried off by flow. Therefore, a source gas is necessary to maintain a superhydrophobic state for its applications under realistic conditions. As detailed in this paper, based on the gas entrapped on a hydrophobic structured surface, the gas regeneration was experimentally achieved to replenish the losses of gas carried off by the flowing and reduced through dissolution.

View Article and Find Full Text PDF

Recently, low interfacial toughness (LIT) materials have been developed to solve large-scale deicing problems. According to the theory of interfacial fracture, ice detachment is dominated by strength-controlled or toughness-controlled regimes, which are characterized by adhesive strength or constant shear force. Here, a new strategy is introduced to regulate the interfacial toughness of poly(dimethylsiloxane) (PDMS) coatings using silicon dioxide nanoparticles (SiO NPs) and phenylmethyl silicone oil (PMSO).

View Article and Find Full Text PDF

Bacterial skin infections cause a variety of common skin diseases that require drugs that are safer than antibiotics and have fewer side effects. However, for evaluating skin disease drugs, human skin tissue constructed traditionally on Transwell has inefficient screening ability because of its fragile barrier function. With mechanical forces and dynamic flow, the organ-on-a-chip system became an innovative, automatic, and modular way to construct pathological models and analyze effective pharmaceutical ingredients .

View Article and Find Full Text PDF

This study develops a novel strategy for regenerative therapy of musculoskeletal soft tissue defects using a dual-phase multifunctional injectable gelatin-hydroxyphenyl propionic acid (Gtn-HPA) composite. The dual-phase gel consists of stiff, degradation-resistant, ≈2-mm diameter spherical beads made from 8 wt% Gtn-HPA in a 2 wt% Gtn-HPA matrix. The results of a 3D migration assay show that both the cell number and migration distance in the dual-phase gel system are comparable with the 2 wt% mono-phase Gtn-HPA, but notably significantly higher than for 8 wt% mono-phase Gtn-HPA (into which few cells migrated).

View Article and Find Full Text PDF

Microcarriers are beads with a diameter of 60-250 µm and a large specific surface area, which are commonly used as carriers for large-scale cell cultures. Microcarrier culture technology has become one of the main techniques in cytological research and is commonly used in the field of large-scale cell expansion. Microcarriers have also been shown to play an increasingly important role in in vitro tissue engineering construction and clinical drug screening.

View Article and Find Full Text PDF

Background: Infectious disease outbreaks such as the COVID-19 (coronavirus disease 2019) pandemic call for rapid response and complete screening of the suspected community population to identify potential carriers of pathogens. Central laboratories rely on time-consuming sample collection methods that are rarely available in resource-limited settings.

Methods: We present a highly automated and fully integrated mobile laboratory for fast deployment in response to infectious disease outbreaks.

View Article and Find Full Text PDF

Hypothesis: A binary mixture was used during injection with one water-miscible component and the other water-immiscible, which can help particles to migrate toward and then self-assemble at the interface.

Experiments: The ethanol-tetrachloromethane binary mixture was used to verify the self-assembly method, with the diameter of droplets being about 1 mm. As the ethanol diffused into the colloidal solution, the colloidal particles efficiently moved towards and self-assembled on the oil/water interface, while a colloidal particle film with high-coverage was able to rapidly form on the droplet surface even in an ultra-low concentration colloidal solution.

View Article and Find Full Text PDF

Although increasing superwetting membranes have been developed for separating oil-water emulsions based on the "size-sieving" mechanism, their pores are easily blocked and fouled by the intercepted emulsified droplets, which would result in a severe membrane fouling issue and a sharp decline in flux. Instead of droplet interception, a fiber-based coalescer separates oil/water emulsions by inducing the emulsified droplets to coalesce and transform into layered oil/water mixtures, exhibiting an ability to work continuously for a long time with high throughput, which makes it a promising technology for emulsion treatment. However, the underlying mechanism of the separation process is not well understood, which makes it difficult to further improve the separation performance.

View Article and Find Full Text PDF

In this study, a surfactant stabilized water-in-oil emulsion has been successfully separated by using only NaCl particles as a filter. This novel strategy is suitable for continuous filtration of a large quantity of water-in-oil emulsion with a volume of up to 1500 mL. Moreover, a filtration flux of up to 40 000 L m h is reported, which is around ten times higher than the conventional filtration methods.

View Article and Find Full Text PDF

Although various superhydrophobic/superoleophilic porous materials have been developed and successfully applied to separate water-in-oil emulsions through the size-sieving mechanism, the separation performance is restricted by their nanoscale pore size severely. In this study, the wettability of underoil water on fumed silica was experimentally observed, and the underlying mechanism was investigated by carrying out theoretical analysis and molecular dynamic (MD) simulations. Further, we present a novel, facile, and an inexpensive technique to fabricate an underoil superhydrophilic metal felt with microscale pores for the separation of water-in-oil emulsions using SiO nanoparticles (NPs) as building blocks.

View Article and Find Full Text PDF

Cervical cancer induced by human papillomavirus (HPV) causes severe morbidity worldwide. Although cervical conization has been widely accepted as the most conventional surgery against cervical cancer, tissue defects and high recurrence rates have a significant negative impact on women's mental and physical health. Herein we developed an implantable, personalized cervical implant with drug release function using 3D printing technology.

View Article and Find Full Text PDF

The directional propulsion of liquid droplets at the nanoscale is quite an interesting topic of research in the fields of micro/nano-fluidics, water filtration, precision medicine, and cooling of electronics. In this study, the unidirectional spontaneous transport of a water nanodroplet on a solid surface with a multi-gradient surface (MGS) inspired by natural species is modeled and analyzed using molecular dynamics (MD) simulations. There are three different MGSs considered in this study containing different wedge angles of the hydrophilic region of the solid surface.

View Article and Find Full Text PDF

The unidirectional transport of liquid nanodroplets is an important topic of research in the field of drug delivery, labs on chips, micro/nanofluidics, and water collection. Inspired by nature a nonparallel surface (NPS) is modelled in this study for pumpless water transport applications. The dynamics of water transport is analyzed with the aid of Molecular Dynamics (MD) simulations.

View Article and Find Full Text PDF

Generally, interactions of oil drops at the air-liquid interface mainly have two features, namely, attraction and repulsion. However, in our study, we find that the oil drops at the air-liquid interface have other interacting features, that is, the atomic-like motion and the "capture" motion. For the atomic-like motion, oil drops attract each other at a long distance, but repel when they are about to come into contact with each other.

View Article and Find Full Text PDF

Although artificial superhydrophobic materials have extensive and significant applications in antifouling, self-cleaning, anti-icing, fluid transport, oil/water separation, and so forth, the poor robustness of these surfaces has always been a bottleneck for their development in practical industrial applications. Here, we report a facile, economical, efficient, and versatile strategy to prepare environmentally friendly, mechanically robust, and transparent superhydrophobic surfaces by combining adhesive and hydrophobic paint, which is applicable for both hard and soft substrates. The coated substrates exhibit excellent superhydrophobic property and ultralow adhesion with water (contact angle ≈ 160° and sliding angle <2°).

View Article and Find Full Text PDF

We assessed an injectable gelatin hydrogel containing epidermal growth factor (Gtn-EGF) as a therapy for intracerebral hemorrhage (ICH). ICH was induced in rats via collagenase injection into the striatum. Two weeks later, Gtn-EGF was injected into the cavitary lesion.

View Article and Find Full Text PDF

Transportation and position control of objects on the surface of liquids is an important part of automation. To drive an object on the surface of a liquid, many methods have been proposed. However, these methods mainly focus on the driving of the object itself, and it is still difficult to precisely control its position.

View Article and Find Full Text PDF

The secreted mucilage trails of the diatom Navicula sp. in the process of motility were studied by scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectra etc. Contrary to previous studies, force measurement was taken directly on the mucilage trails of live cells using the method of in situ force mapping by AFM.

View Article and Find Full Text PDF

Hypothesis: Self-assembly of two types of particles into the binary colloidal crystals (BCCs) leads to the peculiar features which the monocomponent colloidal crystals do not possess. However, the self-assembly methods of the BCCs are still limited.

Experiments: A facile, cost-effective and controllable approach was presented to fabricate the BCCs by directly dripping silica particle suspensions containing water and ethanol into the monodisperse polytetrafluoroethylene (PTFE) colloidal solutions.

View Article and Find Full Text PDF