In molecular dynamics (MD) simulations, selecting an appropriate potential function is a crucial element for accurately simulating the kinetic properties of lithium ion intercalation, storage, and diffusion in graphite systems. This work employed a combination of non-equilibrium molecular dynamics (NEMD) and density-functional theory (DFT) for simulation and analysis. The findings indicate that the AIREBO potential function precisely describes the motion of ordered lithium ions between graphite layers, consistent with the models proposed by Rüdorff and Hofmann (R-H) and Daumas and Hérold (D-H).
View Article and Find Full Text PDFThe utilization of lithium-sulfur battery is hindered by various challenges, including the "shuttle effect", limited sulfur utilization, and the sluggish conversion kinetics of lithium polysulfides (LiPSs). In the present work, a theoretical design for the viability of graphitic carbon nitride (g-CN) and phosphorus-doping graphitic carbon nitride substrates (P-g-CN) as promising host materials in a Li-S battery was conducted utilizing first-principles calculations. The PDOS shows that when the P atom is introduced, the 2p of the N atom is affected by the 2p orbital of the P atom, which increases the energy band of phosphorus-doping substrates.
View Article and Find Full Text PDFWith the continuous development of intensive mariculture, the application of the integrated bioremediation system of aquaculture wastewater (IBSAW) is increasingly promoted. However, the process and nutrients removal performance of the IBSAW need to be further optimized due to its immature technologies. In this study, exogenous compound bacteria (ECB) were added to IBSAW to investigate its pollutants removal efficiency and the relevant mechanisms.
View Article and Find Full Text PDF, a new species of Rosaceae from western Sichuan, China, is described and illustrated. Morphologically, we inferred that the new species belongs to CotoneasterSer.Salicifolii sensu Yü et al.
View Article and Find Full Text PDFThe Mg/S battery has attracted enormous interest in recent years due to its high theoretical capacity, low cost, and high security. However, the understanding of many intermediate magnesium polysulfides in the Mg/S battery remains elusive. Combining extensive structural search and first-principles calculations, we investigate the phase stability, structural character, and electronic structure of magnesium polysulfides in a wide range from MgS to MgS.
View Article and Find Full Text PDFThe low cycle performance and low Coulomb efficiency of tin-based materials confine their large-scale commercial application for lithium-ion batteries. To overcome the shortage of volume expansion of pristine tin, Sn-Co alloy/rGO composites have been successfully synthesized by chemical reduction and sintering methods. The effects of sintering temperature on the composition, structure and electrochemical properties of Sn-Co alloy/rGO composites were investigated by experimental study and first-principles calculation.
View Article and Find Full Text PDFThe compound of essential oils (EOs) is a key approach to achieving the superimposed efficacy of plant EOs. In this article, grey correlation analysis was applied for the first time to explore the compound ratios and contribution between constituents and the bioactivity of the compound EOs. There were 12 active constituents shared in rosemary and magnolia EOs prepared by negative pressure distillation.
View Article and Find Full Text PDFHigh energy density is still difficult to achieve using existing metal sulfides because of their low specific capacitance. To improve capacitance, a series of nickel and cobalt metal sulfides with different Ni/Co ratios were synthesized by a two-step hydrothermal method. Using the combining method of experimental research and first-principles calculation, the morphology, structural stability, electronic structure and electrochemical properties of metal sulfides were investigated systematically.
View Article and Find Full Text PDFMacromol Rapid Commun
July 2022
The self-assembly of copolymers containing crystallizable blocks in solution has received increasing attention in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies are captured and advanced applications have been attempted.
View Article and Find Full Text PDFGlycocholic acid (GCA) is a biomarker for liver diseases, but few facile naked-eye detection methods have been reported to detect it till now. To tackle this challenge, we first prepared a novel monoclonal mouse antibody (mAb) of GCA by a hybridoma technique. The anti-GCA mAb exhibited high specificity, making its cross-reactivity with seven structurally and functionally related GCA analogs negligible.
View Article and Find Full Text PDFThe practical applications of lithium-selenium (Li-Se) batteries are impeded due to the low utilization of active selenium, sluggish kinetics, and volume change. The development of highly efficient host materials to suppress high-order polyselenide shuttling and accelerate LiSe conversion is essential for Li-Se batteries. Herein, a theoretical design of a Co@CN monolayer as a host material for ultra-high areal capacity Li-Se batteries is proposed by first-principles calculations.
View Article and Find Full Text PDFA new strategy of sodium ion batteries with the hybrid storage of Li and Na ions has attracted much attention in the field of large-scale energy storage. For revealing the mechanism of hybrid storage of Li and Na atoms in carbon materials, the lowest energy configuration, adsorption energy, differential charge density and density of states of LiNa clusters on graphene, as a structural unit of carbon materials, were calculated and investigated based on first principles density functional theory. The calculation results show that the deposition behavior of single Li or Na atoms on graphene is similar, and both are preferentially deposited at the hollow of graphene (H-site).
View Article and Find Full Text PDFPalladium nanoparticles (PdNPs) are composed mainly of inert noble metals, and their outstanding properties have attracted wide attention. PdNPs are not only capable of mimicking the oxidase-like characteristics of natural bio-enzymes, but they also present a clear black band in the test zone. In this work, the synthesized PdNPs promoted a transformation of colorless tetramethylbenzidine (TMB) to a blue oxidation product of TMB, providing a K value of 0.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common type of dementia and has a complex pathogenesis with no effective treatment. Energy metabolism disorders, as an early pathological event of AD,have attracted attention as a promising area of AD research. Codonopsis pilosula Polysaccharides are the main effective components of Codonopsis pilosula, which have been demonstrated to regulate energy metabolism.
View Article and Find Full Text PDFSpecific and sensitive biomarker detection is significant for the early diagnosis of cancers. Herein, a highly sensitive electrochemical biosensor employing a tetrahedral DNA nanostructure (TDN) probe and multiple signal amplification strategies has been constructed, and successfully applied to microRNA-122 (miR-122) detection. The platform consisted of a TDN probe anchoring on a gold nanoparticle-coated gold electrode and multiple signal amplification procedures combining the electrodeposition of gold nanoparticles, hybridization chain reaction (HCR), and horseradish peroxidase enzymatic catalysis (HPEC).
View Article and Find Full Text PDFThe concentration of glycocholic acid (GCA) in urine and blood is an important biomarker for liver cancer. Monitoring of GCA depends to a large extent on the availability of appropriate analytical techniques. In this work, based on the immobilization of GCA-OVA onto the sensor chip surface, a label-free competitive inhibition immunoassay for the determination of GCA with the surface plasmon resonance (SPR) technique was developed.
View Article and Find Full Text PDFThe traditional gold-nanoparticle-based lateral flow immunoassay (LFIA) cannot satisfy the requirements for the sensitive detection of dehydroepiandrosterone (DHEA) in human urine. To enhance the sensitivity of the LFIA, platinum-iridium nanocubes (Pt-Ir NCs) with high catalytic efficiency and stability were synthesized and labelled with polyclonal antibody (pAb) to form a pAb-Pt-Ir probe. For the detection of DHEA, a novel LFIA with Pt-Ir NCs as an optical label and an enhanced LFIA in which the peroxidase-like activity of the Pt-Ir NCs was triggered by the introduction of the chromogenic substrate 3-amino-9-ethyl-carbazole (AEC) were developed and compared with a LFIA with platinum nanocubes (PtNCs) as an optical label.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P has been shown to result in lymphopenia.
View Article and Find Full Text PDFLateral flow immunoassay (LFIA) is one of the most widely used tools for analysis and field measurement and has the advantages of high efficiency, simple operation, portability, and low cost. Therefore, in this study, we designed a proof-of-concept of LFIA based on rhodium nanoparticles and investigated its improvement by further introducing the tetramethyl benzidine and HO mixture as the substrate to trigger the color reaction. The proposed methods were qualitative research by the naked eye and quantitative measurement by a smartphone and software.
View Article and Find Full Text PDFPlatinum nanoflowers (PtNFs) were utilized in a competitive enzyme-linked immunosorbent assay (ELISA) and in a lateral flow immunoassay (LFIA) for superior peroxidase-like activity and intense brown color, respectively. PtNFs were linked to the polyclonal antibody (pAb) to form the pAb-PtNFs probes for the dual immunoassay. Based on optimized pAb-PtNF probes, both enzyme-linked immunosorbent assay (PtNFs-ELISA) and lateral flow immunoassay (PtNFs-LFIA) perform very well.
View Article and Find Full Text PDFEfforts aimed at increasing the in vivo potency and reducing the elimination half-life of and led to the identification of aryl ether and thioether-derived bicyclic S1P differentiated modulators -. The effects of analogs - on lymphocyte reduction in the rat (desired pharmacology) along with pulmonary- and cardiovascular-related effects (undesired pharmacology) are described. Optimization of the overall properties in the aryl ether series yielded , and the predicted margin of safety against the cardiovascular effects of would be large enough for human studies.
View Article and Find Full Text PDFThe process of cadmium (Cd) accumulation and detoxification under different sulfur levels remains largely unknown in woody plants. To investigate the physiological and transcriptomic regulation mechanisms of poplars in response to different sulfate (S) supply levels and Cd exposure, we exposed Populus deltoides saplings to one of the low, moderate and high S levels together with either 0 or 50 µM Cd. Cd accumulation was decreased in low S-treated poplar leaves, and it tended to be increased in high S-supplied leaves under the Cd exposure condition.
View Article and Find Full Text PDFPrussian Blue nanoparticles (PBNPs) were utilized in a lateral flow immunoassay (LFA) and in an indirect competitive nanozyme-linked immunosorbent assay (icELISA), respectively, for their intense blue color and peroxidase (POx) -like activity. The PBNPs with good POx-like activity was linked to the antibody. Under the optimal parameters, both the PBNP-icELISA and PBNP-LFA perform very well.
View Article and Find Full Text PDFLithium-sulfur batteries are very promising next-generation energy storage batteries due to their high theoretical specific capacity. However, the shuttle effect of lithium-sulfur batteries is one of the important bottlenecks that limits its rapid development. Herein, physical and chemical dual adsorption of lithium polysulfides are achieved by designing a novel framework structure consisting of MnO, reduced graphene oxide (rGO), and carbon nanotubes (CNTs).
View Article and Find Full Text PDF