Two new ecdysteroids, spectasterone A () and spectasterone B (), together with four known ecdysteroids, breviflorasterone (), ajugalactone (), 20-hydroxyecdysone (), and polypodine B () were isolated from the Korean endemic plant using feature-based molecular networking analysis. The chemical structures of and were determined based on the interpretation of NMR and mass spectrometric data. Their absolute configurations were established using coupling constants, NOESY interactions, Mosher's method, and ECD and DP4+ calculations.
View Article and Find Full Text PDFProtein-protein interactions are vital for various biological processes such as immune reaction, signal transduction, and viral infection. Molecular Dynamics (MD) simulation is a powerful tool for analyzing non-covalent interactions between two protein molecules. In general, MD simulation studies on the protein-protein interface have focused on the analysis of major and frequent molecular interactions.
View Article and Find Full Text PDFEngineering of Fc has been adapted as an efficient method for enhanced or reduced affinity towards Fc receptors in the development of therapeutic antibodies. S239D/I332E mutation of Fc induces approximately two logs greater affinity to the FcγRIIIa receptor and has been extensively employed in various Fc engineering studies. It is known that the mutation gives rise to the formation of salt bridges between the mutated residues of Fc and FcγRIIIa, but the overall effect of the mutation in the binding interface of the Fc-FcγRIIIa complex is still unclear.
View Article and Find Full Text PDFMolecular docking approach has been extensively used to predict the ligand's binding conformation in the binding pocket of protein. However, its prediction accuracy is still limited and highly dependent on target protein-ligand complexes. In this study, we investigated the effects of ligand torsion number, ligand hydrophobicity, and binding-site hydrophobicity on the prediction accuracy of Autodock, a popular molecular docking tool, combinatorially as well as respectively.
View Article and Find Full Text PDFComputational methods to study protein-ligand interactions at a molecular level have been successful to a certain extent in predicting the pose, atomic interactions, and so forth, but poor efficiency in estimating a protein-ligand binding affinity is still a crucial problem to be solved. Analyzing the protein-ligand interactions quantitatively is one primary concern for understanding. Qualitative analysis of these interactions may lead to better insights about protein-ligand interactions.
View Article and Find Full Text PDFThe use of antibiotics is unavoidable in trying to treat acute infections and in the prevention and control of chronic infections. Over the years, an ever increasing number of infections has escalated the use of antibiotics, which has necessitated action against an emerging bacterial resistance. There seems to be a continuous acquisition of new resistance mechanisms among bacteria that switch niches between human, animals, and the environment.
View Article and Find Full Text PDFA Lactobacillus reuteri strain isolated from sourdough is known to produce the vitamin cobalamin. The organism requires this for glycerol cofermentation by a cobalamin-dependent enzyme, usually termed glycerol dehydratase, in the synthesis of the antimicrobial substance reuterin. We show that the cobalamin-synthesizing capacity of another L.
View Article and Find Full Text PDFMany heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g.
View Article and Find Full Text PDFClonal variants of bacteria are able to colonize environmental niches and patients. The factors, that determine the interplay between the colonization of diverse habitats and adaptation, are acquired through horizontal gene transfer. Elucidation of mechanisms, which lead to the prevalence of dominant bacterial clones in patients and the environment, requires the knowledge of complex phenotypes.
View Article and Find Full Text PDFPseudomonas aeruginosa is known for the chronic lung colonization of cystic fibrosis (CF) patients in addition to eye, ear and urinary tract infections. With the underlying disease CF patients are predisposed to P. aeruginosa chronic lung infection, which leads to morbidity and mortality.
View Article and Find Full Text PDFPseudomonas aeruginosa colonizing the lung of cystic fibrosis patients is responsible for a decline in health and poor prognosis for these patients. Once established, growth of P. aeruginosa in microcolonies makes it very difficult to eradicate the organisms by antimicrobial treatment.
View Article and Find Full Text PDFHighly successful bacterial clones have the ability to effectively colonize environmental niches and patients. However, the factors which determine the complex interplay between the colonization of environmental niches and patients are mainly unknown. In this study we show that Pseudomonas aeruginosa clone C strains are distributed worldwide and highly prone to infect cystic fibrosis (CF) patients in Canada, England, France and Germany.
View Article and Find Full Text PDFPseudomonas aeruginosa chronically colonizing the lungs of cystic fibrosis (CF) patients undergoes fast evolution leading to clonal divergence. More than half of the genotypes of P. aeruginosa clone C isolates exclusively from CF lung infection exhibit large chromosomal inversions (LCIs).
View Article and Find Full Text PDF