The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP).
View Article and Find Full Text PDFThe current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach.
View Article and Find Full Text PDFThe objective of the current study is the formulation development and manufacturing of solid self-emulsifying drug delivery systems (HME S-SEDDS) via a single-step continuous hot-melt extrusion (HME) process. For this study, poorly soluble fenofibrate was selected as a model drug. From the results of pre-formulation studies, Compritol® HD5 ATO, Gelucire® 48/16, and Capmul® GMO-50 were selected as oil, surfactant and co-surfactant respectively for manufacturing of HME S-SEDDS.
View Article and Find Full Text PDFAqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ.
View Article and Find Full Text PDFThe current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.
View Article and Find Full Text PDFThis work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent.
View Article and Find Full Text PDFRecent advances in drug delivery technologies utilizing a variety of carriers have resulted in a paradigm shift in the current approach to diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) were developed in response to the need for materials with high thermal, chemical, and mechanical properties. The synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility of MSNs make them useful in a variety of biomedical applications such as drug delivery, theranostics, and stem cell research.
View Article and Find Full Text PDFCoupling hot-melt extrusion (HME) with fused deposition modeling three-dimensional printing (FDM-3DP) can facilitate the fabrication of tailored, patient-centered, and complex-shaped ocular dosage forms. We fabricated ciprofloxacin HCl ocular inserts by coupling high-throughput, solvent-free, and continuous HME with FDM-3DP. Insert fabrication utilized biocompatible, biodegradable, bioadhesive Klucel™ hydroxypropyl cellulose polymer, subjected to distinct FDM-3DP processing parameters, utilizing a design of experiment approach to achieve a tailored release profile.
View Article and Find Full Text PDFThe surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e.
View Article and Find Full Text PDFThe main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.
View Article and Find Full Text PDFThe development of amorphous solid dispersions (ASDs) of high-melting-point drug substances using hot-melt extrusion (HME) continues to be challenging because of the limited availability of polymers that are stable at high processing temperatures. The main aim of this research project is to improve processability and develop three-dimensional (3D) cocrystal printlets of hydrochlorothiazide (HCTZ) using HME paired fused deposition modeling (FDM) techniques. Among the investigated coformers, nicotinamide (NIC) was identified as a suitable coformer.
View Article and Find Full Text PDFSolid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability.
View Article and Find Full Text PDFWith the growing burden of cancer, parallel advancements in anticancer nanotechnological solutions have been witnessed. Among the different types of cancers, breast cancer accounts for approximately 25% and leads to 15% of deaths. Nanomedicine and its allied fields of material science have revolutionized the science of medicine in the 21st century.
View Article and Find Full Text PDFAmong various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug.
View Article and Find Full Text PDFWound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients' quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management.
View Article and Find Full Text PDFFixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP).
View Article and Find Full Text PDFAmorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs.
View Article and Find Full Text PDFCrystal engineering is an emerging tool for altering the physicochemical properties of drug candidates. The objective of the current investigation was to develop cocrystals of hydrochlorothiazide (HCT) with coformers such as nicotinamide (NIC), resorcinol (RSL), and catechol (CAT) using hot-melt extrusion (HME) technology. The liquid-assisted grinding (LAG) method was used to prepare cocrystals by grinding the drug and coformer in a definite molar ratio as a reference and to check the feasibility of cocrystal formation.
View Article and Find Full Text PDFDose dumping is the major drawback of sustained release (SR) matrices. The current research aimed to develop the stable lipid-based SR matrices of quetiapine fumarate (QTF) using Geleol™ (glyceryl monostearate; GMS) as the lipid matrix carrier and Klucel™ EF (HPC EF), Kollidon VA64, and Kollidon 12PF as hydrophilic binders. Formulations were developed using advanced twin screw melt granulation (TSMG) approach and the direct compression (DC) technique.
View Article and Find Full Text PDFEnhancing the solubility of active drug ingredients is a major challenge faced by scientists and researchers. Different approaches have been explored for the enhancement of solubility and physicochemical properties of drugs, without affecting their stability or pharmacological activity. Among the various strategies available, pharmaceutical co-crystals, co-amorphous systems, and pharmaceutical salts as multicomponent systems (MCS) have gained interest to improve physicochemical properties of drugs.
View Article and Find Full Text PDFThe objective of this study was to enhance dissolution and permeation of a low soluble, absorbable fexofenadine hydrochloride (FFH) by preparing solid dispersions using polyethylene glycol 20,000 (PEG 20,000) and poloxamer 188 as carriers. The phase solubility measurement for the supplied FFH revealed a linear increase in the solubility of fexofenadine with increasing carrier concentration in water (1.45 mg/mL to 11.
View Article and Find Full Text PDFInterest in 3D printing for pharmaceutical applications has increased in recent years. Compared to other 3D printing techniques, hot melt extrusion (HME)-based fused deposition modeling (FDM) 3D printing has been the most extensively investigated for patient-focused dosage. HME technology can be coupled with FDM 3D printing as a continuous manufacturing process.
View Article and Find Full Text PDFThe misuse, abuse, and illicit use of prescription opioid analgesics is a global public health concern. However, there are many viable therapeutic options for the treatment of patients with chronic pain. Both intact and manipulated opioid drug products are abused by various routes such as oral, nasal, and injection, which may lead to overdose, drug addiction, and even death.
View Article and Find Full Text PDFThree-dimensional printing could serve as a platform to fabricate individualized medicines and complex-structured solid dosage forms. Herein, hot melt extrusion was coupled with 3D printing to develop a unique gastro retentive dosage form to personalize treatment of cinnarizine or other narrow absorption window drugs. The mechanical strength of the extruded strands was optimized for printing by combining two polymers, hydroxypropyl cellulose and vinylpyrrolidone vinyl acetate copolymer.
View Article and Find Full Text PDFHot melt extrusion has been an exciting technology in the pharmaceutical field owing to its novel applicability. Twin-screw granulation presents a great potential and offers many advantages relative to conventional granulation processes. Different twin-screw granulation techniques, such as twin-screw dry granulation, twin-screw wet granulation, and twin-screw melt granulation, are currently being developed as robust and reproducible granulation processes.
View Article and Find Full Text PDF