Publications by authors named "Dinesh M Morkhade"

Objective: In this study, PEGylated rosin derivatives (PRDs) namely D1 and D2 were synthesized and evaluated for their application to produce sustained-release antibacterial films containing sparfloxacin for periodontitis.

Significance: PRDs are biodegradable and biocompatible, and therefore sustained-release dental implant of PRD-sparfloxacin can provide an effectual treatment for periodontitis.

Methods: Films were produced by solvent casting technique and characterized for morphology, swelling-index, in vitro degradation and drug release kinetics.

View Article and Find Full Text PDF

In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method.

View Article and Find Full Text PDF

Rosin was partially esterified with polyethylene glycol 400 and reacted with maleic-anhydride to form an ester-adduct derivative. Derivative and native rosin were characterized for physicochemical properties. Aqueous coating system of derivative was developed by ammonia neutralization method.

View Article and Find Full Text PDF

The PEGylated derivatives of rosin-PD-1 and PD-2 synthesized and characterized earlier (Nande et al., 2006) were investigated as potential materials for sustained release microsphere prepared by emulsion solvent evaporation method using diclofenac sodium (DCS) as model drug. All the microspheres exhibited smooth surfaces intercepted by pores; their sizes (d(90)) ranged between 11-24 microm.

View Article and Find Full Text PDF

The aim of this study was to investigate PEGylated rosin derivatives (PRDs) as microencapsulating materials for sustained drug delivery. PRDs (D1, D2, and D3) composed of a constant weight of rosin and varied amounts of polyethylene glycol (PEG) 400 and maleic anhydride were synthesized in the laboratory. Microparticles were prepared by the O/O solvent evaporation technique using the acetone/paraffin system.

View Article and Find Full Text PDF