Publications by authors named "Dinesh Hirenallur-Shanthappa"

Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) currently accounts for more than half of patients with HF, with limited approved evidence-based therapies. HFpEF is a complex multifactorial disease associated with hypertension, obesity, diabetes, and renal dysfunction. In addition to our limited understanding of HFpEF pathophysiology, the development of new therapies is partially hindered by the existing translationally relevant preclinical HFpEF models.

View Article and Find Full Text PDF

Inhibition of branched-chain ketoacid dehydrogenase kinase (BDK or BCKDK), a negative regulator of branched-chain amino acid (BCAA) metabolism, is hypothesized to treat cardio-metabolic diseases. From a starting point with potential idiosyncratic toxicity risk, modification to a benzothiophene core and discovery of a cryptic pocket allowed for improved potency with 3-aryl substitution to arrive at PF-07328948, which was largely devoid of protein covalent binding liability. This BDK inhibitor was shown also to be a BDK degrader in cells and in vivo rodent studies.

View Article and Find Full Text PDF

Human genetic studies show that loss of function mutations in 17-Beta hydroxysteroid dehydrogenase (HSD17β13) are associated with protection from non-alcoholic steatohepatitis (NASH). As a result, therapies that reduce HSD17β13 are being pursued for the treatment of NASH. However, inconsistent effects on steatosis, inflammation, and fibrosis pathogenesis have been reported in murine Hsd17b13 knockdown or knockout models.

View Article and Find Full Text PDF

From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) and hypertrophic cardiomyopathy (HCM) are rising public health concerns, with this complex issue showing increasing prevalence despite declining overall mortality.
  • Isoproterenol (ISP), a drug used to induce cardiotoxicity in mice models, was tested through two different delivery methods (subcutaneous and subcutaneous minipump) at varying doses to evaluate their effects on heart disease.
  • Results indicated that while both delivery methods led to similar increases in heart weight and disease traits, the minipump method resulted in more pronounced changes in heart metrics, highlighting the significance of drug delivery on disease progression.
View Article and Find Full Text PDF

Unlabelled: Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We have developed a novel "2-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and the incidence of new-onset AF has been increasing over the past two decades. Several factors contribute to the risk of developing AF including age, preexisting cardiovascular disease, chronic kidney disease, and obesity. Concurrent with the rise in AF, obesity has followed the same two-decade trend.

View Article and Find Full Text PDF

Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional allele and one floxed-out/null allele.

View Article and Find Full Text PDF

Background & Aims: Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver.

View Article and Find Full Text PDF

Echocardiography (echo) is a translationally relevant ultrasound imaging modality widely used to assess cardiac structure and function in preclinical models of heart failure (HF) during research and drug development. Although echo is a very valuable tool, the image analysis is a time-consuming, resource-demanding process, and is susceptible to interreader variability. Recent advancements in deep learning have enabled researchers to automate image processing and reduce analysis time and interreader variability in the field of medical imaging.

View Article and Find Full Text PDF

Growth and differentiation factor 15 (GDF15) is a cytokine reported to cause anorexia and weight loss in animal models. Neutralization of GDF15 was efficacious in mitigating cachexia and improving survival in cachectic tumor models. Interestingly, elevated circulating GDF15 was reported in patients with pulmonary arterial hypertension and heart failure, but it is unclear whether GDF15 contributes to cachexia in these disease conditions.

View Article and Find Full Text PDF

Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction.

View Article and Find Full Text PDF

Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold-stressed and must use brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis.

View Article and Find Full Text PDF

Nonalcoholic Steatohepatitis (NASH) is a condition within the spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD), which is characterized by liver fat accumulation (steatosis) and inflammation leading to fibrosis. Preclinical models closely recapitulating human NASH/NAFLD are essential in drug development. While liver biopsy is currently the gold standard for measuring NAFLD/NASH progression and diagnosis in the clinic, in the preclinical space, either collection of whole liver samples at multiple timepoints during a study or biopsy of liver is needed for histological analysis to assess the disease stage.

View Article and Find Full Text PDF

Background & Aims: Disordered metabolism, steatosis, hepatic inflammation, and fibrosis contribute to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in de novo lipogenesis (DNL) and modulates mitochondrial fatty acid oxidation. Increased hepatic DNL flux and reduced fatty acid oxidation are hypothesized to contribute to steatosis.

View Article and Find Full Text PDF

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known.

View Article and Find Full Text PDF

The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias.

View Article and Find Full Text PDF