Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Rhodopsin is the pigment that enables night vision, whereas cone opsins are the pigments responsible for color vision in bright-light conditions. Despite their importance for vision, cone opsins are poorly characterized at the molecular level compared to rhodopsin. Spectra and kinetics of the intermediate states of human green-cone visual pigment (mid-wavelength sensitive, or MWS opsin) were measured and compared with the intermediates and kinetics of bovine rhodopsin.
View Article and Find Full Text PDFThis paper presents room temperature nanoseconds to milliseconds time-resolved spectra and kinetics of the intermediate states and species of bovine and carp fish rhodopsin visual pigments, which also contained ~5% cone pigments. The nanoseconds to milliseconds range cover all the major intermediates in the visual phototransduction process except the formation of bathorhodopsin intermediate which occurs at the femtosecond time scale. The dynamics of these visual pigment intermediates are initiated by excitation with a 532 nm nanosecond laser pulse.
View Article and Find Full Text PDFIn this report, we describe the design, construction, and operation of a cell-phone-based Raman and emission spectral detector, which when coupled to a diffraction grating and cell-phone camera system provides means for the detection, recording, and identification of chemicals, drugs, and biological molecules, in situ by means of their Raman and fluorescence spectra. The newly constructed cell-phone spectrometer system was used to record Raman spectra from various chemicals and biological molecules including the resonance enhanced Raman spectra of carrots and bacteria. In addition, we present the quantitative analysis of alcohol-water Raman spectra, performed using our cell-phone spectrometer.
View Article and Find Full Text PDFThe resonance Raman spectra of bacterial carotenoids have been employed to identify bacterial strains and their intensity changes as a function of ultraviolet (UV) radiation dose have been used to differentiate between live and dead bacteria. In addition, the resonance-enhanced Raman spectra enabled us to detect bacteria in water at much lower concentrations (∼10 cells/mL) than normally detected spectroscopically. A handheld spectrometer capable of recording resonance Raman spectra in situ was designed, constructed, and was used to record the spectra.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
In this study, absorption, fluorescence, synchronous fluorescence, and Raman spectra of nonirradiated and ultraviolet (UV)-irradiated thymine solutions were recorded in order to detect thymine dimer formation. The thymine dimer formation, as a function of irradiation dose, was determined by Raman spectroscopy. In addition, the formation of a mutagenic (6-4) photoproduct was identified by its synchronous fluorescence spectrum.
View Article and Find Full Text PDFWe have designed, constructed, and utilized a charge-coupled device system, integrated with a small Newtonian telescope, capable of long distance recording of bacterial fluorescence and synchronous spectra for the detection of bacteria, their component molecules, and other species. This newly developed optical system utilizes commercial monochrome cameras that we have used to detect various bacterial strains, such as Escherichia coli, and determine their concentrations. In addition, using this system, we were able to differentiate between live and dead bacteria after treatment with ultraviolet light or antibiotics.
View Article and Find Full Text PDFAs a classic ferromagnetic material, nickel has been an important research candidate used to study dynamics and interactions of electron, spin, and lattice degrees of freedom. In this study, we specifically chose a thick, 150 nm ferromagnetic nickel (111) single crystal rather than 10-20 nm thin crystals that are typically used in ultrafast studies, and we revealed both the ultrafast heating within the skin depth and the heat transfer from the surface (skin) layer to the bulk of the crystal. The lattice deformation after femtosecond laser excitation was investigated by means of 8.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
The UV photodissociation kinetics of tryptophan amino acid, Trp, attached to the membrane of bacteria, and , have been studied by means of normal and synchronous fluorescence. Our experimental data suggest that the fluorescence intensity of Trp increases during the first minute of irradiation with 250 nm to ∼ 280 nm, 7 mW/cm UV light, and subsequently decreases with continuous irradiation. During this short, less than a minute, period of time, 70% of the 10 cell per milliliter bacteria are inactivated.
View Article and Find Full Text PDFJ Microbiol Methods
November 2018
Antibiotics are drugs that react against, kill, or inhibit the growth of bacteria. The method most often employed to evaluate the effectiveness of an antibiotic to kill bacteria requires at least 16 to 24 h for bacterial incubation. The requirement of long periods of time for the determination of the number of bacteria still alive after antibiotic treatment, may, in many cases, be detrimental to the patient's health.
View Article and Find Full Text PDF