Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO nanoparticle. With an optimized Ag loading (Ag/TiO = 0.5 wt%), the Ag atoms will uniformly disperse on TiO thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO in the hybrid composite (denoted as T@Ag05-P).
View Article and Find Full Text PDFA ternary catalyst comprising Iridium (Ir) single-atoms (SA)s decorated on the Co-oxide supported palladium (Pd) nanoparticles (denoted as CPI-SA) is developed in this work. The CPI-SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mg , respectively, at 0.
View Article and Find Full Text PDFPlasma treatment and reduction are used to synthesize Pt nanoparticles (NPs) on nitrogen-doped carbon nanotubes (p-Pt/p-NCNT) with a low Pt content. In particular, the plasma treatment is used to treat the NCNT to give it with more surface defects, facilitating a better growth of the Pt NPs, while the plasma reduction produces the Pt NPs with a reduced fraction of the surface atoms at the high oxidation states, increasing the catalytic activities of the p-Pt@p-NCNT. Even at the low Pt content (7.
View Article and Find Full Text PDFThe catalytic conversion of CO into valuable commodities has the potential to balance ongoing energy and environmental issues. To this end, the reverse water-gas shift (RWGS) reaction is a key process that converts CO into CO for various industrial processes. However, the competitive CO methanation reaction severely limits the CO production yield; therefore, a highly CO-selective catalyst is needed.
View Article and Find Full Text PDFA hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO ) is developed for visible-light-driven H production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO occurs leading to a quantum leap in the H production yield (18 578 µmol g h ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO , 11 321 µmol g h ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations.
View Article and Find Full Text PDFFuel cells are considered potential energy conversion devices for utopia; nevertheless, finding a highly efficacious and economical electrocatalyst for the oxygen reduction reaction (ORR) is of great interest. By keeping this in view, we have proposed a novel design of a trimetallic nanocatalyst (NC) comprising atomic Pt clusters at the heterogeneous Ni(OH)-to-Pd interface (denoted NPP-70). The as-prepared material surpasses the commercial J.
View Article and Find Full Text PDFAn effective approach for increasing the Noble metal-utilization by decorating the atomic Pt clusters (1 wt.%) on the CoO@SnPd nanoparticle (denoted as CSPP) for oxygen reduction reaction (ORR) is demonstrated in this study. For the optimum case when the impregnation temperature for Co-crystal growth is 50 °C (denoted as CSPP-50), the CoPt nanoalloys and Pt-clusters decoration with multiple metal-to-metal oxide interfaces are formed.
View Article and Find Full Text PDFThe abnormal lattice expansion of commercial polypropylene (PP)/polyethylene (PE)/polypropylene (PP) separator in lithium-ion battery under different charging current densities was observed by in-situ X-ray diffraction. Significant lattice changes of both PP and PE were found during the low current density charging. The capacity fading and the resistance value of the cell measured at 0.
View Article and Find Full Text PDFThe development of electrocatalysts with reconcilable balance between the cost and performance in oxygen reduction reaction (ORR) is an imperative task for the widespread adoption of fuel cell technology. In this study, we proposed a unique model of diatomic Pt-cluster (Pt-dimer) in the topmost layer of the Co/Pd bimetallic slab (Co@Pd-Pt2) for mimicking the Cocore@Pdshell nanocatalysts (NCs) surface and systematically investigating its local-regional collaboration pathways in ORR by density functional theory (DFT). The results demonstrate that the Pt-dimer produces local differentiation from both ligand and geometric effects on the Co@Pd surface, which forms adsorption energy (Eads) gradients for relocating the ORR-adsorbates.
View Article and Find Full Text PDFFormic acid oxidation reaction (FAOR) at anode counterpart incurs at substantial high overpotential, limiting the power output efficiency of direct formic acid fuel cells (DFAFCs). Despite intense research, the lack of high-performance nanocatalysts (NCs) for FAOR remains a challenge in realizing DFAFC technologies. To surmount the overpotential losses, it is desirable to have NCs to trigger the FAOR as close to the reversible conditions (i.
View Article and Find Full Text PDFThe alteration of surface functional properties incorporation of foreign atoms is supposed to be a key strategy for the enhanced catalytic performance of noble-metal based nanocatalysts (NCs). In the present study, carbon-supported palladium (Pd)-based NCs including Pd, PdPt and PdRuPt have been prepared a polyol reduction method under the same reduction conditions as for formic acid oxidation reaction (FAOR) applications. By cross-referencing the results of the microscopic, spectroscopic and electrochemical analysis we demonstrated that adding a small amount of platinum (Pt) into Pd NCs ( PdPt NCs) significantly promotes the FAOR performance as compared to that of Pd NCs weakening the CO bond strength at a lower voltage (0.
View Article and Find Full Text PDFHierarchical structures in shell with transition metal underneath is a promising design for high-performance and low-cost heterogeneous nanocatalysts (NCs). Such a design enables the optimum extent of synergetic effects in NC surface. It facilitates intermediate reaction steps and, therefore, boosts activity of NC in oxygen reduction reaction (ORR).
View Article and Find Full Text PDFCarbon nanotube supported ternary metallic nanocatalysts (NCs) comprising Ni-Pd structure and Pt atomic scale clusters in shell (namely, Ni@Pd/Pt) are synthesized by using wet chemical reduction method with reaction time control. Effects of Pt adsorption time and Pt/Pd composition ratios on atomic structure with respect to electrochemical performances of experimental NCs are systematically investigated. By cross-referencing results of high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption, density functional theoretical calculations, and electrochemical analysis, we demonstrate that oxygen reduction reaction (ORR) activity is dominated by depth and distribution of Pt clusters in a Ni@Pd/Pt NC.
View Article and Find Full Text PDFHerein, ternary metallic nanocatalysts (NCs) consisting of Au clusters decorated with a Pt shell and a Ni oxide core underneath (called NPA) on carbon nanotube (CNT) support were synthesized by combining adsorption, precipitation, and chemical reduction methods. By a retrospective investigation of the physical structure and electrochemical results, we elucidated the effects of Pt/Ni ratios (0.4 and 1.
View Article and Find Full Text PDFThe plasmonic optical tweezer has been developed to overcome the diffraction limits of the conventional far field optical tweezer. Plasmonic optical lattice consists of an array of nanostructures, which exhibit a variety of trapping and transport behaviors. We report the experimental procedures to trap micro-particles in a simple square nanoplasmonic optical lattice.
View Article and Find Full Text PDF