A series of new potentially multi-targeting antimicrobial 2-aminothiazolyl quinolones were designed, synthesized and characterized by H NMR, C NMR, IR, MS and HRMS spectra. Bioactive assay manifested that some of the prepared compounds showed moderate to good antibacterial and antifungal activities. Noticeably, compound 10f could effectively inhibit the growth of B.
View Article and Find Full Text PDFNaphthalimide compounds are an important type of nitrogen-containing aromatic heterocycles with cyclic double imides and the naphthalene framework. This π-deficient large conjugated planar structure enables naphthalimide derivatives to readily interact with various biological cations, anions, small molecules and macromolecules such as DNAs, enzymes and recetors in living organism via noncovalent bonds, therefore exhibiting extensive potentiality in relatively medicinal applications. Currently, some naphthalimides as anticancer agents have entered into clinical trials and other naphthalimide-based medicinal developments as potential drugs for treatment of various diseases are actively and unprecedentedly expanding.
View Article and Find Full Text PDFA series of novel 3-aminothiazolquinolones as analogues of quinolone antibacterial agents were designed and synthesized in an effort to circumvent quinolone resistance. Among these 3-aminothiazolquinolones, 3-(2-aminothiazol-4-yl)-7-chloro-6-(pyrrolidin-1-yl) quinolone 12b exhibited potent antibacterial activity, low cytotoxicity to hepatocyte cells, strong inhibitory potency to DNA gyrase, and a broad antimicrobial spectrum including against multidrug-resistant strains. This active molecule 12b also induced bacterial resistance more slowly than norfloxacin.
View Article and Find Full Text PDFA series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria.
View Article and Find Full Text PDFA series of novel 2-butyl-4-chloro-1-methylimidazole derived peptidomimetics were designed, synthesized and evaluated for their Angiotensin Converting Enzyme (ACE) inhibitor activity. 2-Butyl-4-chloro-1-methylimidazole-5-carboxylic acid 2 obtained after oxidation of respective carboxaldehyde 1, was condensed with various amino acid methyl esters 3a-k to give imidazole-amino acid conjugates 4a-k in very good yields. Ester hydrolysis of 4a-k with aqueous LiOH gave the desired peptidomimetics 5a-k.
View Article and Find Full Text PDFHere a series of 2-butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids were designed by combining three different pharmacophoric fragments in single molecular architecture. 2-Butyl-4-chloro-1-(3-(4-substituted)piperazin-1-yl)propyl)-1H-imidazole-5-carbaldehydes (4a-p) prepared by reacting carboxaldehyde 2 with N-alkyl piperazines 3a-p which were condensed with thiosemicarbazine to give desired compounds 5a-p in very good yields. Among all sixteen compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB), two compounds (E)-2-((2-butyl-4-chloro-1-(3-(4-(o-tolyl) piperazin-1-yl)propyl)-1H-imidazol-5-yl)methylene)hydrazinecarbothioamide 5e and (E)-2-((2-butyl-4-chloro-1-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-imidazol-5-yl)methylene) hydrazine carbothioamide 5f were found to be the most potent antitubercular agents (MIC: 3.
View Article and Find Full Text PDFA series of novel 1,2,3-triazole-adamantylacetamide hybrids 5a-u, designed by combining bioactive fragments from antitubercular I-A09 and substituted adamantyl urea, were synthesized using copper catalyzed click chemistry. N-(1-Adamantyl)-2-azido acetamide 3 prepared from 1-adamantylamine was reacted with a series of alkyl/aryl acetylenes in the presence of copper sulfate and sodium ascorbate to give new analogues 5a-u in very good yields. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294), resulted N-(1-adamantan-1-yl)-2-(4-(phenanthren-2-yl)-1H-1,2,3-triazol-1-yl)acetamide (5t) as most promising lead MIC: 3.
View Article and Find Full Text PDFMolecular hybridization is an emerging structural modification tool to design molecules with better pharmacophoric properties. A series of novel 2-(trifluoromethyl)phenothiazine-1,2,3-triazoles 5a-v designed by hybridizing two antitubercular drugs trifluoperazine and I-A09 in a single molecular architecture, were synthesized in very good yields using click chemistry. Among the all '22' compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (Mtb), three analogs 5c, 5l and 5o were found to be most potent (MIC: 6.
View Article and Find Full Text PDFA series of novel 10-substituted 2-hydroxypyrrolobenzodiazepine-5,11-diones designed through structure based rational hybridization approach, synthesized by the cyclodehydration of isotonic anhydride with (2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid followed by N-substitution, were evaluated as angiotensin converting enzyme (ACE) inhibitors. Among all the new compounds screened (2R,11aS)-10-((4-bromothiophen-2-yl)methyl)-2-hydroxy-2,3-dihydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H,11aH)dione, 5v (IC₅₀: 0.272 μM) emerged as most active non-carboxylic acid ACE inhibitor with minimal toxicity comparable to clinical drugs Lisinopril, Benazepril and Ramipril.
View Article and Find Full Text PDFA series of novel 1-benzyl-2-butyl-4-chloroimidazole embodied 4-azafluorenone hybrids, designed via molecular hybridization approach, were synthesized in very good yields using one pot condensation of 1-benzyl-2-butyl-4-chloroimidazole-5-carboxaldehyde, 1,3-indanedione, aryl/heteroaryl methyl ketones and ammonium acetate. All the synthetic derivatives were fully characterized by spectral data and evaluated for antimicrobial activity by disc diffusion method against selected bacteria and fungal strains. Among the 15 new compounds screened, 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(furan-2-yl)-5H-indeno[1,2-b]pyridin-5-one(10k) has pronounced activity with higher zone of inhibition (ZoI) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Aspergillus flavus and Candida albicans.
View Article and Find Full Text PDFA series of novel 2-butyl-4-chloro-1-methylimidazole embedded aryl and heteroaryl derived chalcones and pyrazoles were synthesized and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. The condensation of 2-butyl-4-chloro-1-methylimidazole-5-carboxaldehyde with various aryl and heteroaryl methyl ketones in the presence of 10% aqueous NaOH in methanol proceeded efficiently to give the respective chalcones in very good yields. Further, the reaction of chalcones with hydrazine hydrate in acetic acid gave substituted pyrazole analogues.
View Article and Find Full Text PDFACS Comb Sci
July 2011
The diversity oriented synthesis of substituted pyridines and dihydro-6H-quinolin-5-ones tethered with aryls and heteroaryls was achieved in very good yields through CeCl(3)·7H(2)O-NaI catalyst via variants of the Bohlmann-Rahtz reaction. β-Enaminones derived from various aryl and heteroaryl methyl ketones were regioselectively reacted with ethyl acetoacetate or 5,5-dimethylcyclohexane-1,3-dione or 4,4-dimethylcyclohexane-1,3-dione and ammonium acetate refluxing in 2-propanol. Applicability of nontoxic cerium catalyst, high reactivity with wide range of aryl and heteroaryl β-enaminones leading to diverse analogues, operational simplicity, and shorter reaction time at comparatively low temperatures are prominent features of the developed protocol.
View Article and Find Full Text PDF