Publications by authors named "Diner B"

The molecular mechanisms acting between host recognition of pathogen effectors by nucleotide-binding leucine-rich repeat receptor (NLR) proteins and mitogen-activated protein kinase (MAPK) signaling cascades are unknown. MAPKKKα (M3Kα) activates MAPK signaling leading to programmed cell death (PCD) associated with NLR-triggered immunity. We identified a tomato M3Kα-interacting protein, SlMai1, that has 80% amino acid identity with brassinosteroid kinase 1 (AtBsk1).

View Article and Find Full Text PDF
Article Synopsis
  • Viral DNA sensing is crucial for the mammalian innate immune response, where cGAS is activated by viral DNA to produce cyclic dinucleotides and type I interferons.
  • The study investigates how cGAS interacts with various proteins during HSV-1 infection in human fibroblasts, comparing different HSV-1 strains and using mass spectrometry for proteome analysis.
  • Results reveal that the OASL protein negatively regulates cGAS activity, suggesting a mechanism for maintaining cGAS homeostasis and preventing excessive cytokine response during viral infections.
View Article and Find Full Text PDF

There is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (CH), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C and C biofuels. The strictly anaerobic, acetogenic bacterium , used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway.

View Article and Find Full Text PDF

Unlabelled: The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections.

View Article and Find Full Text PDF

Unlabelled: Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS). Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs).

View Article and Find Full Text PDF

Background: Fine milling of dry lignocellulosic biomass, without prior chemical pretreatment, can produce a high percent theoretical yield of sugars during subsequent enzymatic saccharification. However, the high sugar yields, necessary for a commercial biofuels process, are costly, with the milling energy input, necessary to achieve such yields even exceeding the energy content of the biomass. In this study, we show that low moisture gaseous ammonia pretreatment of switchgrass, in advance of the milling step, significantly reduces the milling energy required to give high sugar titers.

View Article and Find Full Text PDF

Detection of viral DNA is essential for eliciting mammalian innate immunity. However, viruses have acquired effective mechanisms for blocking host defense. Indeed, in this issue of Cell Host & Microbe, Wu et al.

View Article and Find Full Text PDF

Detecting pathogenic DNA by intracellular receptors termed "sensors" is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion.

View Article and Find Full Text PDF

Interferon γ-inducible protein 16 (IFI16) and cGMP-AMP synthase (cGAS) have both been proposed to detect herpesviral DNA directly in herpes simplex virus (HSV)-infected cells and initiate interferon regulatory factor-3 signaling, but it has been unclear how two DNA sensors could both be required for this response. We therefore investigated their relative roles in human foreskin fibroblasts (HFFs) infected with HSV or transfected with plasmid DNA. siRNA depletion studies showed that both are required for the production of IFN in infected HFFs.

View Article and Find Full Text PDF

The interferon-inducible protein IFI16 has emerged as a critical antiviral factor and sensor of viral DNA. IFI16 binds nuclear viral DNA, triggering expression of antiviral cytokines during infection with herpesviruses. The knowledge of the mechanisms and protein interactions through which IFI16 exerts its antiviral functions remains limited.

View Article and Find Full Text PDF

The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein.

View Article and Find Full Text PDF

In recent years, mass spectrometry has emerged as a core component of fundamental discoveries in virology. As a consequence of their coevolution, viruses and host cells have established complex, dynamic interactions that function either in promoting virus replication and dissemination or in host defense against invading pathogens. Thus, viral infection triggers an impressive range of proteome changes.

View Article and Find Full Text PDF

Emerging evidence highlights a critical role for protein acetylation during herpesvirus infection. As prominent modulators of protein acetylation, histone deacetylases (HDACs) are essential transcriptional and epigenetic regulators. Not surprisingly, viruses have evolved a wide array of mechanisms to subvert HDAC functions.

View Article and Find Full Text PDF

We investigated the electronic structure of the photosystem II reaction center (PSII RC) in relation to the light-induced charge separation process using Stark spectroscopy on a series of site-directed PSII RC mutants from the cyanobacterium Synechocystis sp. PCC 6803. The site-directed mutations modify the protein environment of the cofactors involved in charge separation (P(D1), P(D2), Chl(D1), and Phe(D1)).

View Article and Find Full Text PDF

Detection of pathogenic nucleic acids is essential for mammalian innate immunity. IFN-inducible protein IFI16 has emerged as a critical sensor for detecting pathogenic DNA, stimulating both type I IFN and proinflammatory responses. Despite being predominantly nuclear, IFI16 can unexpectedly sense pathogenic DNA in both the cytoplasm and the nucleus.

View Article and Find Full Text PDF

Understanding the links among plant genotype, plant chemistry, and food selection by vertebrate herbivores is critical to assess the role of herbivores in the evolution of plant secondary chemistry. Some specialized vertebrate herbivores have been shown to select plants differentially according to plant genotype, but examples from generalists, which constitute the vast majority of vertebrate herbivores, are few, especially in natural conditions. We examined the relationship between the North American porcupine (Erethizon dorsatum), a generalist mammalian herbivore, and clonal trembling aspen (Populus tremuloides), a preferred food source of porcupines.

View Article and Find Full Text PDF

The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II.

View Article and Find Full Text PDF

A role for redox-active tyrosines has been demonstrated in many important biological processes, including water oxidation carried out by photosystem II (PSII) of oxygenic photosynthesis. The rates of tyrosine oxidation and reduction and the Tyr/Tyr reduction potential are undoubtedly controlled by the immediate environment of the tyrosine, with the coupling of electron and proton transfer, a critical component of the kinetic and redox behavior. It has been demonstrated by Faller et al.

View Article and Find Full Text PDF

Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g.

View Article and Find Full Text PDF

It is now quite well accepted that charge separation in PS2 reaction centers starts predominantly from the accessory chlorophyll B(A) and not from the special pair P(680). To identify spectral signatures of B(A,) and to further clarify the process of primary charge separation, we compared the femtosecond-infrared pump-probe spectra of the wild-type (WT) PS2 core complex from the cyanobacterium Synechocystis sp. PCC 6803 with those of two mutants in which the histidine residue axially coordinated to P(B) (D2-His(197)) has been changed to Ala or Gln.

View Article and Find Full Text PDF

In an effort to develop sensitive nanoscale devices for chemical and biological sensing, we have examined, using liquid gating, the conductance of semiconducting single-walled carbon nanotube-based field-effect transistors (SWCNT-FETs) in the presence of redox mediators. As examples, redox couples K3Fe(CN)6/K4Fe(CN)6 and K2IrCl6/K3IrCl6 are shown to modulate the SWCNT-FET conductance in part through their influence via the electrolyte gate on the electrostatic potential of the solution, as described by Larrimore et al. (Nano Lett.

View Article and Find Full Text PDF

D1-Thr179, which overlies the reaction center chlorophyll Chl D1 of Photosystem II was replaced with His and Glu through site-directed mutation in Synechocystis sp. PCC 6803. Spectroscopic characterization of the mutants indicates that, compared to wild type, the main bleaching in the triplet-minus-singlet absorbance difference spectrum and the electrochromic band shift in the (P680 (+)Q A (-)-P680Q A) absorbance difference spectrum are displaced to the red by approximately 2 nm in the D1-Thr179His mutant and to the blue by approximately 1 nm in the D1-Thr179Glu mutant.

View Article and Find Full Text PDF

Most clinicians, and especially emergency physicians, are increasingly faced with the need for valid and reliable evidence upon which to base practice decisions in a timely fashion. Despite the accumulation of synthesized evidence in emergency medicine over the past decade, knowledge gaps still exist between what is known and what is practiced. In many cases, this failure in knowledge uptake relates to barriers in uptake as well as the difficulty of translating evidence from research to the bedside.

View Article and Find Full Text PDF

This article reflects the proceedings of a workshop session, Postgraduate Education and Knowledge Translation, at the 2007 Academic Emergency Medicine Consensus Conference on knowledge translation (KT) in emergency medicine (EM). The objective was to develop a research strategy that incorporates KT into EM graduate medical education (GME). To bridge the gap between the best evidence and optimal patient care, Pathman et al.

View Article and Find Full Text PDF