The use of new approach methodologies (NAMs) in support of read-across (RAx) approaches for regulatory purposes is a main goal of the EU-ToxRisk project. To bring this forward, EU-ToxRisk partners convened a workshop in close collaboration with regulatory representatives from key organizations including European regulatory agencies, such as the European Chemicals Agency (ECHA) and the European Food Safety Authority (EFSA), as well as the Scientific Committee on Consumer Safety (SCCS), national agencies from several European countries, Japan, Canada and the USA, as well as the Organisation for Economic Cooperation and Development (OECD). More than a hundred people actively participated in the discussions, bringing together diverse viewpoints across academia, regulators and industry.
View Article and Find Full Text PDFSince teratogenicity testing in mammals is a particular challenge from an animal welfare perspective, there is a great need for the development of alternative test systems. In this context, the zebrafish (Danio rerio) embryo has received increasing attention as a non-protected embryonic vertebrate in vivo model. The predictive power of zebrafish embryos for general vertebrate teratogenicity strongly depends on the correlation between fish and mammals with respect to both overall general toxicity and more specific endpoints indicative of certain modes-of-action.
View Article and Find Full Text PDFRead-across is one of the most frequently used alternative tools for hazard assessment, in particular for complex endpoints such as repeated dose or developmental and reproductive toxicity. Read-across extrapolates the outcome of a specific toxicological in vivo endpoint from tested (source) compounds to "similar" (target) compound(s). If appropriately applied, a read-across approach can be used instead of de novo animal testing.
View Article and Find Full Text PDFRepeated dose toxicity evaluation aims at assessing the occurrence of adverse effects following chronic or repeated exposure to chemicals. Non-animal approaches have gained importance in the last decades because of ethical considerations as well as due to scientific reasons calling for more human-based strategies. A critical aspect of this challenge is linked to the capacity to cover a comprehensive set of interdependent mechanisms of action, link them to adverse effects and interpret their probability to be triggered in the light of the exposure at the (sub)cellular level.
View Article and Find Full Text PDFSub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity.
View Article and Find Full Text PDFGrouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities.
View Article and Find Full Text PDFRead-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity.
View Article and Find Full Text PDFThere is a great need for rapid testing strategies for reproductive toxicity testing, avoiding animal use. The EU Framework program 7 project ChemScreen aimed to fill this gap in a pragmatic manner preferably using validated existing tools and place them in an innovative alternative testing strategy. In our approach we combined knowledge on critical processes affected by reproductive toxicants with knowledge on the mechanistic basis of such effects.
View Article and Find Full Text PDFThere is a great need for alternative testing methods for reproductive toxicants that are practical, fast, cost-effective and easy to interpret. Previously we followed a pragmatic approach using readily available tests, which was successful in predicting reproductive toxicity of chemicals [13]. This initial battery still contained apical tests and is fairly complex and low in its throughput.
View Article and Find Full Text PDFPreviously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches.
View Article and Find Full Text PDFRead-across is a data gap filling technique used within category and analogue approaches. It has been utilized as an alternative approach to address information requirements under various past and present regulatory programs such as the OECD High Production Volume Programme as well as the EU's Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulation. Although read-across raises a number of expectations, many misconceptions still remain around what it truly represents; how to address its associated justification in a robust and scientifically credible manner; what challenges/issues exist in terms of its application and acceptance; and what future efforts are needed to resolve them.
View Article and Find Full Text PDFZebrafish embryos were exposed to different organotin compounds during very early development (<100h post fertilization). Morphology, histopathology and swimming activity (in a motor activity test) were the endpoints analyzed. DBTC was, by far, the most embryotoxic compound at all time points and endpoints studied.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
November 2013
Within the EU FP6 project OSIRIS approaches to Integrated Testing Strategies (ITSs) were developed, with the aim to facilitate the use of non-test and non-animal testing information in regulatory risk assessment of chemicals. This paper describes an analytical Weight-of-Evidence (WoE) approach to an ITS for the endpoint of skin sensitisation. It specifically addresses the European chemicals legislation REACH, but the concept is readily applicable to ITS and WoE procedures in other regulatory frameworks, and for other toxicological endpoints.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
November 2013
In the FP6 European project OSIRIS, Integrated Testing Strategies (ITSs) for relevant toxicological endpoints were developed to avoid new animal testing and thus to reduce time and costs. The present paper describes the development of an ITS for repeated-dose toxicity called RepDose ITS which evaluates the conditions under which in vivo non-guideline studies are reliable. In a tiered approach three aspects of these "non-guideline" studies are assessed: the documentation of the study (reliability), the quality of the study design (adequacy) and the scope of examination (validity).
View Article and Find Full Text PDFChemical substances policies in Europe are aiming towards chemical safety and at the same time a reduction in animal testing. These goals are alleged to be reachable by mining as many relevant data as possible, evaluate these data with regard to validity, reliability and relevance, and use of these data in so-called Integrated Testing Strategies (ITS). This paper offers an overview of four human health endpoints that were part of the EU-funded OSIRIS project, aiming to develop ITS fit for the EU chemicals legislation REACH.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
November 2013
Risk assessment of chemicals usually implies data evaluation of in vivo tests in rodents to conclude on their hazards. The FP7 European project OSIRIS has developed integrated testing strategies (ITS) for relevant toxicological endpoints to avoid unnecessary animal testing and thus to reduce time and costs. This paper describes the implementation of ITS mutagenicity and carcinogenicity in the public OSIRIS webtool.
View Article and Find Full Text PDFStoffenmanager Nano (version 1.0) is a risk-banding tool developed for employers and employees to prioritize health risks occurring as a result of exposure to manufactured nano objects (MNOs) for a broad range of worker scenarios and to assist implementation of control measures to reduce exposure levels. In order to prioritize the health risks, the Stoffenmanager Nano combines the available hazard information of a substance with a qualitative estimate of potential for inhalation exposure.
View Article and Find Full Text PDFIn spite of extensive research in the area over many decades, there is still a shortage of accepted alternative testing methods in reproductive toxicology. Of the variety of alternative methods developed for reproductive toxicity testing not a single one has reached regulatory acceptance. Although various standardized tests have been described, their predictability and applicability domains have so far not satisfactorily been defined.
View Article and Find Full Text PDFIt is generally recognized that human, epidemiological data, if available, are preferred as the starting point for quantitative risk analysis above the use of data from animal studies. Although methods to obtain proper risk estimates from epidemiological data are available, several impediments prevent their widespread application. These impediments include unfamiliarity with epidemiological methods and the lack of a structured and transparent approach.
View Article and Find Full Text PDF