We present a comprehensive study of the temperature- and magnetic-field-dependent photoluminescence (PL) of individual NV centers in diamond, spanning the temperature-range from cryogenic to ambient conditions. We directly observe the emergence of the NV's room-temperature effective excited-state structure and provide a clear explanation for a previously poorly understood broad quenching of NV PL at intermediate temperatures around 50 K, as well as the subsequent revival of NV PL. We develop a model based on two-phonon orbital averaging that quantitatively explains all of our findings, including the strong impact that strain has on the temperature dependence of the NV's PL.
View Article and Find Full Text PDFSpin-lattice relaxation within the nitrogen-vacancy (NV) center's electronic ground-state spin triplet limits its coherence times, and thereby impacts its performance in quantum applications. We report measurements of the relaxation rates on the NV center's |m_{s}=0⟩↔|m_{s}=±1⟩ and |m_{s}=-1⟩↔|m_{s}=+1⟩ transitions as a function of temperature from 9 to 474 K in high-purity samples. We show that the temperature dependencies of the rates are reproduced by an ab initio theory of Raman scattering due to second-order spin-phonon interactions, and we discuss the applicability of the theory to other spin systems.
View Article and Find Full Text PDFDetection of volatile organic compounds (VOCs) is one of the most challenging tasks in modelling breath analyzers because of their low concentrations (parts-per-billion (ppb) to parts-per-million (ppm)) in breath and the high humidity levels in exhaled breaths. The refractive index is one of the crucial optical properties of metal-organic frameworks (MOFs), which is changeable via the variation of gas species and concentrations that can be utilized as gas detectors. Herein, for the first time, we used Lorentz-Lorentz, Maxwell-Ga, and Bruggeman effective medium approximation (EMA) equations to compute the percentage change in the index of refraction (Δn%) of ZIF-7, ZIF-8, ZIF-90, MIL-101(Cr) and HKUST-1 upon exposure to ethanol at various partial pressures.
View Article and Find Full Text PDFDue to their high sensitivity, simplicity, portability, self-contained, and low cost, the development of electrochemical biosensors is a beneficial way to diagnose and anticipate many types of cancers. An electrochemical nanocomposite-based aptasensor is fabricated for the determination of miRNA-128 concentration as the acute lymphoblastic leukemia (ALL) biomarker for the first time. The aptamer chains were immobilized on the surface of the glassy carbon electrode (GCE) through gold nanoparticles/magnetite/reduced graphene oxide (AuNPs/FeO/RGO).
View Article and Find Full Text PDFAccording to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. FeO nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of FeO-based materials and their photocatalytic and magnetic properties.
View Article and Find Full Text PDFThe development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode.
View Article and Find Full Text PDFControl over the charge states of color centers in solids is necessary to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-band-gap semiconductors are complex, and much remains unknown. We utilize a single-shot charge-state readout of an individual nitrogen-vacancy (NV) center to probe the charge dynamics of the surrounding defects in diamond.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2021
Chemical sensors with high sensitivity that can be used under extreme conditions and can be miniaturized are of high interest in science and industry. The nitrogen-vacancy (NV) center in diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin and its optical accessibility. In this theoretical work, we propose the use of an NV center to detect electrochemical signals emerging from an electrolyte solution, thus obtaining a concentration sensor.
View Article and Find Full Text PDFQuantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements.
View Article and Find Full Text PDF