Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the plasma membrane. Vesicles attach to membranes via a specialized protein machinery composed of membrane-attached (t-SNARE) and vesicle-attached (v-SNARE) proteins that zipper together to form a coiled-coil SNARE bundle that brings the two fusing membranes into close proximity. Neurotransmitter release may occur either in response to an action potential or through spontaneous fusion.
View Article and Find Full Text PDFSynaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear.
View Article and Find Full Text PDFPatterned depolarization of Drosophila motor neurons can rapidly induce the outgrowth of new synaptic boutons at the larval neuromuscular junction (NMJ), providing a model system to investigate mechanisms underlying acute structural plasticity. Correlative light and electron microscopy analysis revealed that new boutons typically form near the edge of postsynaptic reticulums of presynaptic boutons. Unlike mature boutons, new varicosities have synaptic vesicles which are distributed uniformly throughout the bouton and undeveloped postsynaptic specializations.
View Article and Find Full Text PDFComplexins are small α-helical proteins that modulate neurotransmitter release by binding to SNARE complexes during synaptic vesicle exocytosis. They have been found to function as fusion clamps to inhibit spontaneous synaptic vesicle fusion in the absence of Ca(2+), while also promoting evoked neurotransmitter release following an action potential. Complexins consist of an N-terminal domain and an accessory α-helix that regulates the activating and inhibitory properties of the protein, respectively, and a central α-helix that binds the SNARE complex and is essential for both functions.
View Article and Find Full Text PDF