Mol Ther Methods Clin Dev
December 2023
Over the last decade, there has been a growing interest in intrabodies and their therapeutic potential. Intrabodies are antibody fragments that are expressed inside a cell to target intracellular antigens. In the context of intracellular protein misfolding and aggregation, such as tau pathology in Alzheimer's disease, intrabodies have become an interesting approach as there is the possibility to target early stages of aggregation.
View Article and Find Full Text PDFBackground: Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin.
View Article and Find Full Text PDF-β-linked -acetylglucosaminylation (-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau -GlcNAcylation upon treatment with inhibitors of -GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau -GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau -GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional -GlcNAcylation sites on tau could be identified.
View Article and Find Full Text PDFIn Alzheimer's disease (AD) brain, one of the histopathological hallmarks is the neurofibrillary tangles consisting of aggregated and hyperphosphorylated tau. Currently many tau binding antibodies are under development to target the extracellular species responsible for the spreading of the disease in the brain. As such, an in-house developed antibody JNJ-63733657 with picomolar affinity towards tau phosphorylated at both T212 and T217 (further named p217+tau) was recently tested in phase I clinical trial NCT03375697.
View Article and Find Full Text PDF