Background: Genome-wide association studies have implicated variants in SCN10A, which encodes Nav1.8, as modulators of cardiac conduction. Follow-up work has indicated the SCN10A sequence includes an intronic enhancer for SCN5A.
View Article and Find Full Text PDFRationale: Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown.
Objective: We determined the electrophysiological and pharmacological properties of Nav1.
Aims: Female gender is a risk factor for long QT-related arrhythmias, but the underlying mechanisms remain uncertain. Here, we tested the hypothesis that gender-dependent function of the post-depolarization 'late' sodium current (I(Na-L)) contributes.
Methods And Results: Studies were conducted in mice in which the canonical cardiac sodium channel Scn5a locus was disrupted, and expression of human wild-type SCN5A cDNA substituted.
Rationale: Although multiple lines of evidence suggest that variable expression of the cardiac sodium channel gene SCN5A plays a role in susceptibility to arrhythmia, little is known about its transcriptional regulation.
Objective: We used in silico and in vitro experiments to identify possible noncoding sequences important for transcriptional regulation of SCN5A. The results were extended to mice in which a putative regulatory region was deleted.
Rationale: Voltage-gated sodium channels initiate action potentials in excitable tissues. Mice in which Scn5A (the predominant sodium channel gene in heart) has been knocked out die early in development with cardiac malformations by mechanisms which have yet to be determined.
Objective: Here we addressed this question by investigating the role of cardiac sodium channels in zebrafish heart development.
Background: The atrioventricular (AV) node is essential for the sequential excitation and optimized contraction of the adult multichambered heart; however, relatively little is known about its formation from the embryonic AV canal. A recent study demonstrated that signaling by Alk3, the type 1a receptor for bone morphogenetic proteins, in the myocardium of the AV canal was required for the development of both the AV valves and annulus fibrosus. To test the hypothesis that bone morphogenetic protein signaling also plays a role in AV node formation, we investigated conduction system function and AV node morphology in adult mice with conditional deletion of Alk3 in the AV canal.
View Article and Find Full Text PDFThe cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription.
View Article and Find Full Text PDF