Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model of birdsong learning fails to explain juvenile zebra finches' efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors that jointly maximize a common intrinsic reward, then birds' empirical learning trajectories are accurately reproduced.
View Article and Find Full Text PDFHumans and songbirds face a common challenge: acquiring the complex vocal repertoire of their social group. Although humans are thought to be unique in their ability to convey symbolic meaning through speech, speech and birdsong are comparable in their acoustic complexity and the mastery with which the vocalizations of adults are acquired by young individuals. In this review, we focus on recent advances in the study of vocal development in humans and songbirds that shed new light on the emergence of distinct structural levels of vocal behavior and point to new possible parallels between both groups.
View Article and Find Full Text PDFCulturally transmitted behaviors have an innate foundation, but the detailed sequential structure of such complex, acquired behaviors is often an outcome of historical accidents. New research has identified innate predispositions for structuring vocal sequences in culturally acquired birdsong.
View Article and Find Full Text PDFWhile acquiring motor skills, animals transform their plastic motor sequences to match desired targets. However, because both the structure and temporal position of individual gestures are adjustable, the number of possible motor transformations increases exponentially with sequence length. Identifying the optimal transformation towards a given target is therefore a computationally intractable problem.
View Article and Find Full Text PDFVocal imitation involves incorporating instructive auditory information into relevant motor circuits through processes that are poorly understood. In zebra finches, we found that exposure to a tutor's song drives spiking activity within premotor neurons in the juvenile, whereas inhibition suppresses such responses upon learning in adulthood. We measured inhibitory currents evoked by the tutor song throughout development while simultaneously quantifying each bird's learning trajectory.
View Article and Find Full Text PDFHuman language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches (Taeniopygia guttata) with an analysis of natural development of vocal transitions in Bengalese finches (Lonchura striata domestica) and pre-lingual human infants.
View Article and Find Full Text PDFExploratory variability is essential for sensorimotor learning, but it is not known how and at what timescales it is regulated. We manipulated song learning in zebra finches to experimentally control the requirements for vocal exploration in different parts of their song. We first trained birds to perform a one-syllable song, and once they mastered it, we added a new syllable to the song model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
Quantitative analysis of behavior plays an important role in birdsong neuroethology, serving as a common denominator in studies spanning molecular to system-level investigation of sensory-motor conversion, developmental learning, and pattern generation in the brain. In this review, we describe the role of behavioral analysis in facilitating cross-level integration. Modern sound analysis approaches allow investigation of developmental song learning across multiple time scales.
View Article and Find Full Text PDFNeurosci Biobehav Rev
July 2010
The demand for replicability of behavioral results across laboratories is viewed as a burden in behavior genetics. We demonstrate how it can become an asset offering a quantitative criterion that guides the design of better ways to describe behavior. Passing the high benchmark dictated by the replicability demand requires less stressful and less restraining experimental setups, less noisy data, individually customized cutoff points between the building blocks of movement, and less variable yet discriminative dynamic representations that would capture more faithfully the nature of the behavior, unmasking similarities and differences and revealing novel animal-centered measures.
View Article and Find Full Text PDFAnxiety is a widely studied psychiatric disorder and is thought to be a complex and multidimensional phenomenon. Sensitive behavioral discrimination of animal models of anxiety is crucial for the elucidation of the behavioral components of anxiety and the physiological processes that mediate them. Commonly used behavior paradigms of anxiety usually include only a few automatically collected measures; these do not exhaust the behavioral richness exhibited by animals, thus perhaps missing important differences between preparations.
View Article and Find Full Text PDFConventional tests of behavioral phenotyping frequently have difficulties differentiating certain genotypes and replicating these differences across laboratories and protocol conditions. This study explores the hypothesis that automated tests can be designed to quantify ethologically relevant behavior patterns that more readily characterize heritable and replicable phenotypes. It used SEE (Strategy for the Exploration of Exploration) to phenotype the locomotor behavior of the C57BL/6 and DBA/2 mouse inbred strains across 3 laboratories.
View Article and Find Full Text PDFIn the open-field behavior of rodents, Software for Exploring Exploration (SEE) can be used for an explicit design of behavioral endpoints with high genotype discrimination and replicability across laboratories. This ability is demonstrated here in the development of a measure for darting behavior. The behavior of two common mouse inbred strains, C57BL/6J (B6) and DBA/2J (D2), was analyzed across three different laboratories, and under the effect of cocaine or amphetamine.
View Article and Find Full Text PDF