Publications by authors named "Dina L Bai"

Donald Hunt has made seminal contributions to the fields of proteomics, immunology, epigenetics, and glycobiology. The foundation of every important work to come out of the Hunt Laboratory is de novo peptide sequencing. For decades, he taught hundreds of students, postdocs, engineers, and scientists to directly interpret mass spectral data.

View Article and Find Full Text PDF
Article Synopsis
  • * The stability of DELLA proteins is influenced by phytohormones and post-translational modifications like SUMO-conjugation and different forms of glycosylation, although the impact of phosphorylation on DELLA stability has been debated.
  • * This study identifies specific phosphorylation sites on the DELLA protein RGA, revealing that these modifications enhance RGA's activity without affecting its interactions with transcription factors or its overall stability.
View Article and Find Full Text PDF

DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation.

View Article and Find Full Text PDF

Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures.

View Article and Find Full Text PDF

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells.

View Article and Find Full Text PDF

RNA granules are cytoplasmic condensates that organize biochemical and signaling complexes in response to cellular stress. Functional proteomic investigations under RNA-granule-inducing conditions are needed to identify protein sites involved in coupling stress response with ribonucleoprotein regulation. Here, we apply chemical proteomics using sulfonyl-triazole (SuTEx) probes to capture cellular responses to oxidative and nutrient stress.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status.

View Article and Find Full Text PDF
Article Synopsis
  • There is a significant need for new immunotherapy targets for colorectal cancer (CRC), particularly focusing on tumor-infiltrating lymphocytes (TILs) which act as a critical indicator of prognosis.
  • Recent research identifies 120 HLA-I phosphopeptides from CRC tumors and metastases, showing that these tumor-specific antigens are linked to abnormal protein phosphorylation due to dysregulated signaling in cancer.
  • The study reveals that these phosphopeptides not only play a pivotal role in TIL activity within tumors but also provoke stronger immune responses in CRC patients compared to healthy individuals, suggesting their potential utility in targeted therapies.
View Article and Find Full Text PDF

Chemical proteomics is widely used for the global investigation of protein activity and binding of small molecule ligands. Covalent probe binding and inhibition are assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to gain molecular information on targeted proteins and probe-modified sites. The identification of amino acid sites modified by large complex probes, however, is particularly challenging because of the increased size, hydrophobicity, and charge state of peptides derived from modified proteins.

View Article and Find Full Text PDF

The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications.

View Article and Find Full Text PDF

Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor.

View Article and Find Full Text PDF

Accurate sequence characterization is essential for the development of therapeutic antibodies by the pharmaceutical industry. Presented here is a methodology to obtain comprehensive sequence analysis of a monoclonal antibody. An enzyme reactor of immobilized Aspergillopepsin I, a highly stable nonspecific protease, was used to cleave reduced antibody subunits into a peptide profile ranging from 1 to 20 kDa.

View Article and Find Full Text PDF

Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing.

View Article and Find Full Text PDF

We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E.

View Article and Find Full Text PDF

Leukemias are highly immunogenic, but they have a low mutational load, providing few mutated peptide targets. Thus, the identification of alternative neoantigens is a pressing need. Here, we identify 36 MHC class I-associated peptide antigens with O-linked β--acetylglucosamine (-GlcNAc) modifications as candidate neoantigens, using three experimental approaches.

View Article and Find Full Text PDF

The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines.

View Article and Find Full Text PDF

The centromere is the locus on the chromosome that acts as the essential connection point between the chromosome and the mitotic spindle. A histone H3 variant, CENP-A, defines the location of the centromere, but centromeric chromatin consists of a mixture of both CENP-A-containing and H3-containing nucleosomes. We report a surprisingly uniform pattern of primarily monomethylation on lysine 20 of histone H4 present in short polynucleosomes mixtures of CENP-A and H3 nucleosomes isolated from functional centromeres.

View Article and Find Full Text PDF

Methodology for sequence analysis of ∼150 kDa monoclonal antibodies (mAb), including location of post-translational modifications and disulfide bonds, is described. Limited digestion of fully denatured (reduced and alkylated) antibody was accomplished in seconds by flowing a sample in 8murea at a controlled flow rate through a micro column reactor containing immobilized aspergillopepsin I. The resulting product mixture containing 3-9 kDa peptides was then fractionated by capillary column liquid chromatography and analyzed on-line by both electron-transfer dissociation and collisionally activated dissociation mass spectrometry (MS).

View Article and Find Full Text PDF
Article Synopsis
  • Phosphorylation in cancer cells often goes awry, leading to abnormal growth and signaling that contributes to tumor development.
  • Phosphopeptides from these dysregulated proteins, especially those displayed on tumors but not on healthy tissues, show promise for targeted cancer immunotherapies since they can trigger immune responses.
  • Two new mass spectrometry methods have been developed to effectively enrich and identify these phosphopeptides from very small sample amounts, significantly enhancing the potential for cancer research and treatment.
View Article and Find Full Text PDF

Previously, we described implementation of a front-end ETD (electron transfer dissociation) source for an Orbitrap instrument (1). This source facilitates multiple fills of the C-trap with product ions from ETD of intact proteins prior to mass analysis. The result is a dramatic enhancement of the observed ion current without the need for time consuming averaging of data from multiple mass measurements.

View Article and Find Full Text PDF

We created a web-based tutorial designed to teach manual interpretation and identification of spectra acquired using electron transfer dissociation (ETD). The tutorial provides an explanation of the ETD fragmentation process with the goal of identifying all of the significant peaks in a spectrum. We discuss determination of the precursor mass and charge state, neutral losses, electron transfer without dissociation (ETnoD), and the mechanisms by which fragment ions are created.

View Article and Find Full Text PDF

Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion-ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer.

View Article and Find Full Text PDF

Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants.

View Article and Find Full Text PDF

Background: Electron Transfer Dissociation [ETD] can dissociate multiply charged precursor polypeptides, providing extensive peptide backbone cleavage. ETD spectra contain charge reduced precursor peaks, usually of high intensity, and whose pattern is dependent on its parent precursor charge. These charge reduced precursor peaks and associated neutral loss peaks should be removed before these spectra are searched for peptide identifications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmlfkbehekib849mcannt45psvcae5a35): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once