This study tests the hypothesis that association complexes formed between enoxaparin and cetyltrimethylammonium bromide (CTAB) augment permeation across the gastrointestinal mucosa due to improved encapsulation of this hydrophilic macromolecule within biocompatible poly (lactide-co-glycolide, PLGA RG 503) nanoparticles. When compared with free enoxaparin, association with CTAB increased drug encapsulation efficiency within PLGA nanoparticles from 40.3 ± 3.
View Article and Find Full Text PDFPoor aqueous solubility, chemical instability, and indiscriminate cytotoxicity have limited clinical development of camptothecin (CPT) as potent anticancer therapeutic. This research aimed at fabricating thermoresponsive nanocomposites that enhance solubility and stability of CPT in aqueous milieu and enable stimulus-induced drug release using magnetic hyperthermia. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG) (1:1, mol/mol) were immobilized on the surface of superparamagnetic FeO nanoparticles (SPIONs) via high affinity avidin-biotin interactions.
View Article and Find Full Text PDFMagnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.
View Article and Find Full Text PDF