Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention.
View Article and Find Full Text PDFExtramural venous invasion is an independent prognostic factor in colorectal cancers; the pathological identification of extramural venous invasion in bladder cancer remains unclear. By focusing on high-stage urothelial carcinoma of the bladder, we provide insights into the pathological identification of extramural venous invasion in this particular clinical context. Clinical and demographic details and pathological reports were extracted from electronic medical records.
View Article and Find Full Text PDFBackground: Acute pain is a common and debilitating symptom experienced by oral cavity and oropharyngeal cancer (OC/OPC) patients undergoing radiation therapy (RT). Uncontrolled pain can result in opioid overuse and increased risks of long-term opioid dependence. The specific aim of this exploratory analysis was the prediction of severe acute pain and opioid use in the acute on-treatment setting, to develop risk-stratification models for pragmatic clinical trials.
View Article and Find Full Text PDFRadiation therapy (RT) is a crucial treatment for head and neck squamous cell carcinoma (HNSCC), however it can have adverse effects on patients' long-term function and quality of life. Biomarkers that can predict tumor response to RT are being explored to personalize treatment and improve outcomes. While tissue and blood biomarkers have limitations, imaging biomarkers derived from magnetic resonance imaging (MRI) offer detailed information.
View Article and Find Full Text PDFThis paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images.
View Article and Find Full Text PDFBackground: Quick magnetic resonance imaging (MRI) scans with low contrast-to-noise ratio are typically acquired for daily MRI-guided radiotherapy setup. However, for patients with head and neck (HN) cancer, these images are often insufficient for discriminating target volumes and organs at risk (OARs). In this study, we investigated a deep learning (DL) approach to generate high-quality synthetic images from low-quality images.
View Article and Find Full Text PDFBackground/purpose: Sarcopenia is a prognostic factor in patients with head and neck cancer (HNC). Sarcopenia can be determined using the skeletal muscle index (SMI) calculated from cervical neck skeletal muscle (SM) segmentations. However, SM segmentation requires manual input, which is time-consuming and variable.
View Article and Find Full Text PDFThe accurate determination of sarcopenia is critical for disease management in patients with head and neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-generated segmentations of skeletal muscle derived from computed tomography (CT) cross-sectional imaging. This has prompted the increasing utilization of machine learning models for automated sarcopenia determination.
View Article and Find Full Text PDF