Publications by authors named "Dina Dechmann"

Compared with their free-ranging counterparts, wild animals in captivity experience different conditions with lasting physiological and behavioural effects. Although shifts in gene expression are expected to occur upstream of these phenotypes, we found no previous gene expression comparisons of captive versus free-ranging mammals. We assessed gene expression profiles of three brain regions (cortex, olfactory bulb and hippocampus) of wild shrews () compared with shrews kept in captivity for two months and undertook sample dropout to examine robustness given limited sample sizes.

View Article and Find Full Text PDF

Long-distance migration, common in passerine birds, is rare and poorly studied in bats. Piloting a 1.2-gram IoT (Internet of Things) tag with onboard processing, we tracked the daily location, temperature, and activity of female common noctules () during spring migration across central Europe up to 1116 kilometers.

View Article and Find Full Text PDF

All foraging animals face a trade-off: how much time should they invest in exploitation of known resources versus exploration to discover new resources? For group-living central place foragers, this balance is challenging. Due to the nature of their movement patterns, exploration and exploitation are often mutually exclusive, while the availability of social information may discourage individuals from exploring. To examine these trade-offs, we GPS-tracked groups of greater spear-nosed bats () from three colonies on Isla Colón, Panamá.

View Article and Find Full Text PDF

Time-synchronised data streams from bio-loggers are becoming increasingly important for analysing and interpreting intricate animal behaviour including split-second decision making, group dynamics, and collective responses to environmental conditions. With the increased use of AI-based approaches for behaviour classification, time synchronisation between recording systems is becoming an essential challenge. Current solutions in bio-logging rely on manually removing time errors during post processing, which is complex and typically does not achieve sub-second timing accuracies.

View Article and Find Full Text PDF

Understanding how animals meet their daily energy requirements is critical in our rapidly changing world. Small organisms with high metabolic rates can conserve stored energy when food availability is low or increase energy intake when energetic requirements are high, but how they balance this in the wild remains largely unknown. Using miniaturized heart rate transmitters, we continuously quantified energy expenditure, torpor use and foraging behaviour of free-ranging male bats () in spring and summer.

View Article and Find Full Text PDF

Animal foraging is fundamentally shaped by food distribution and availability. However, the quantification of spatiotemporal food distribution is rare but crucial to explain variation in foraging behavior among species, populations, or individuals. Clumped but ephemeral food sources enable rapid energy intake but require increased effort to find, can generate variable foraging success, and force animals to forage more efficiently.

View Article and Find Full Text PDF

Increasing agriculture and pesticide use have led to declines in insect populations and biodiversity worldwide. In addition to insect diversity, it is also important to consider insect abundance, due to the importance of insects as food for species at higher trophic levels such as bats. We monitored spatiotemporal variation in abundance of nocturnal flying insects over meadows, a common open landscape structure in central Europe, and correlated it with bat feeding activity.

View Article and Find Full Text PDF

Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in gene expression are key to phenotypic innovation, but the details of how these changes occur and affect trait evolution are not well understood.
  • This study investigates the genetic mechanisms behind masculinizing ovotestes in female moles, focusing on the role of SALL1 expression and enhancer activity.
  • Findings reveal that while 3D organization of the SALL1 locus is conserved, there is a notable divergence in enhancer functionality, indicating that modifications in gene expression could explain how new traits evolve.
View Article and Find Full Text PDF

A typical consequence of breeding animal species for domestication is a reduction in relative brain size. When domesticated animals escape from captivity and establish feral populations, the larger brain of the wild phenotype is usually not regained. In the American mink (), we found an exception to this rule.

View Article and Find Full Text PDF

Metabolic processes of animals are often studied in controlled laboratory settings. However, these laboratory settings often do not reflect the animals' natural environment. Thus, results of metabolic measurements from laboratory studies must be cautiously applied to free-ranging animals.

View Article and Find Full Text PDF

The common shrew, , is a small mammal of growing interest in neuroscience research, as it exhibits dramatic and reversible seasonal changes in individual brain size and organization (a process known as Dehnel's phenomenon). Despite decades of studies on this system, the mechanisms behind the structural changes during Dehnel's phenomenon are not yet understood. To resolve these questions and foster research on this unique species, we present the first combined histological, magnetic resonance imaging (MRI), and transcriptomic atlas of the common shrew brain.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding species' functional traits helps decipher biodiversity patterns, gauge environmental change impacts, and evaluate conservation effectiveness.
  • EuroBaTrait 1.0 is the latest and most extensive dataset detailing traits of 47 European bat species, covering a wide range of 118 traits.
  • The dataset was compiled from literature, expert insights, and large-scale monitoring, while also identifying areas needing more research for better species and trait representation.
View Article and Find Full Text PDF

Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g.

View Article and Find Full Text PDF

Structures created by animals can serve many purposes. Spiders weave intricate webs to trap prey; beavers engineer complex networks of dams to alter waterways; male bower birds construct and decorate elaborate bowers to attract mates. Animal architecture ranges widely in function, but by far the most common use is shelter.

View Article and Find Full Text PDF

Global climate change affects many aspects of biology and has been shown to cause body size changes in animals. However, suitable datasets allowing the analysis of long-term relationships between body size, climate, and its effects are rare. The size of the skull is often used as a proxy for overall body size.

View Article and Find Full Text PDF

Seasonal changes in the environment can lead to astonishing adaptations. A few small mammals with exceptionally high metabolisms have evolved a particularly extreme strategy: they shrink before winter and regrow in spring, including changes of greater than 20% in skull and brain size. Whether this process is an adaptation to seasonal climates, resource availability or both remains unclear.

View Article and Find Full Text PDF

Torpor is characterized by an extreme reduction in metabolism and a common energy-saving strategy of heterothermic animals. Torpor is often associated with cold temperatures, but in the last decades, more diverse and flexible forms of torpor have been described. For example, tropical bat species maintain a low metabolism and heart rate at high ambient and body temperatures.

View Article and Find Full Text PDF

Environmental variability poses a range of challenges to foraging animals trying to meet their energetic needs. Where food patches are unpredictable but shareable, animals can use social information to locate patches more efficiently or reliably. However, resource unpredictability can be heterogeneous and complex.

View Article and Find Full Text PDF

GPS-enabled loggers have been proven as valuable tools for monitoring and understanding animal movement, behaviour and ecology. While the importance of recording accurate location estimates is well established, deployment on many, especially small species, has been limited by logger mass and cost. We developed an open-source and low-cost 0.

View Article and Find Full Text PDF

Lázaro and Dechmann explain how some mammals that live through harsh winters exhibit seasonal shrinkage of the brain and skull, a process called Dehnel's phenomenon, which helps to spare energy during times of food shortage and high energetic demands.

View Article and Find Full Text PDF

Some small mammals exhibit Dehnel's Phenomenon, a drastic decrease in body mass, braincase, and brain size from summer to winter, followed by a regrowth in spring. This is accompanied by a re-organization of the brain and changes in other organs. The evolutionary link between these changes and seasonality remains unclear, although the intensity of change varies between locations as the phenomenon is thought to lead to energy savings during winter.

View Article and Find Full Text PDF

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age.

View Article and Find Full Text PDF