Cultivated tomato ( L.) is susceptible to abiotic stresses, including drought and chilling stress, while its wild relative () exhibits tolerance to many abiotic stresses. Chilling roots to 6°C induces rapid-onset water stress by impeding water movement from roots to shoots.
View Article and Find Full Text PDFQTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling.
View Article and Find Full Text PDFPreviously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits.
View Article and Find Full Text PDFWhen the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e.
View Article and Find Full Text PDFPremise Of The Study: Cultivated tomato, Solanum lycopersicum, suffers chilling induced wilting because water movement through its roots decreases with declining soil temperatures. Certain wild tomato species exhibit resistance to chilling-induced wilting, but the extent of this chilling tolerance in wild tomatoes is not known. •
Methods: We measured shoot wilting during root chilling in wild Solanum accessions from habitats differing in elevation, temperature, and precipitation.
Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S.
View Article and Find Full Text PDFAnnu Rev Phytopathol
November 2010
Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits.
View Article and Find Full Text PDFBackground: Several high-throughput technologies can measure in parallel the abundance of many mRNA transcripts within a sample. These include the widely-used microarray as well as the more recently developed methods based on sequence tag abundances such as the Massively Parallel Signature Sequencing (MPSS) technology. A comparison of microarray and MPSS technologies can help to establish the metrics for data comparisons across these technology platforms and determine some of the factors affecting the measurement of mRNA abundances using different platforms.
View Article and Find Full Text PDFBackground: Nucleotide binding site-leucine rich repeat (NBS-LRR)-encoding genes comprise the largest class of plant disease resistance genes. The 149 NBS-LRR-encoding genes and the 58 related genes that do not encode LRRs represent approximately 0.8% of all ORFs so far annotated in Arabidopsis ecotype Col-0.
View Article and Find Full Text PDFLittle is known about how gene expression variation within a given species controls phenotypic variation under different treatments or environments. Here, we surveyed the transcriptome response of seven diverse Arabidopsis thaliana accessions in response to two treatments: the presence and absence of exogenously applied salicylic acid (SA), an important signaling molecule in plant defense. A factorial experiment was conducted with three biological replicates per accession with and without applications of SA and sampled at three time points posttreatment.
View Article and Find Full Text PDFThe genetic architecture of transcript-level variation is largely unknown. The genetic determinants of transcript-level variation were characterized in a recombinant inbred line (RIL) population (n = 211) of Arabidopsis thaliana using whole-genome microarray analysis and expression quantitative trait loci (eQTL) mapping of transcript levels as expression traits (e-traits). Genetic control of transcription was highly complex: one-third of the quantitatively controlled transcripts/e-traits were regulated by cis-eQTL, and many trans-eQTL mapped to hotspots that regulated hundreds to thousands of e-traits.
View Article and Find Full Text PDFBackground: Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression.
View Article and Find Full Text PDFExpression microarrays hybridized with RNA can simultaneously provide both phenotypic (gene expression) and genotypic (marker) data. We developed two types of genetic markers from Affymetrix GeneChip expression data to generate detailed haplotypes for 148 recombinant inbred lines (RILs) derived from Arabidopsis thaliana accessions Bayreuth and Shahdara. Gene expression markers (GEMs) are based on differences in transcript levels that exhibit bimodal distributions in segregating progeny, while single feature polymorphism (SFP) markers rely on differences in hybridization to individual oligonucleotide probes.
View Article and Find Full Text PDFDifferential gene expression controls variation in numerous plant traits, such as flowering time and plant/pest interactions, but little is known about the genomic distribution of the determinants of transcript levels and their associated variation. Affymetrix ATH1 GeneChip microarrays representing 22,810 genes were used to survey the transcriptome of seven Arabidopsis thaliana accessions in the presence and absence of exogenously applied salicylic acid (SA). These accessions encompassed approximately 80% of the moderate- to high-frequency nucleotide polymorphisms in Arabidopsis.
View Article and Find Full Text PDFMany plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum.
View Article and Find Full Text PDFTwo tomato inbred backcross line (IBL) populations, derived from crosses between aphid-susceptible Lycopersicon esculentum Mill. 'Peto 95-43' X resistant wild L. pennellii Corr (D'arcy) accession LA716, and Peto 95-43 X resistant wild L.
View Article and Find Full Text PDFCultivated tomato (L. esculentum L.) germplasm exhibits limited genetic variation compared with wild Lycopersicon species.
View Article and Find Full Text PDFQuantitative trait loci (QTLs) for resistance to Phytophthora infestans (late blight) were mapped in tomato. Reciprocal backcross populations derived from cultivated Lycopersicon esculentum x wild Lycopersicon hirsutum (BC-E, backcross to L. esculentum; BC-H, backcross to L.
View Article and Find Full Text PDF