Publications by authors named "Dimple A Modi"

Activation of apoptosis in malignant cells is an established strategy for controlling cancer and is potentially curative. To assess the impact of concurrently inducing the extrinsic and intrinsic apoptosis-signaling pathways in acute myeloid leukemia (AML), we evaluated activity of the TRAIL receptor agonistic fusion protein eftozanermin alfa (eftoza; ABBV-621) in combination with the B-cell lymphoma protein-2 selective inhibitor venetoclax in preclinical models and human patients. Simultaneously stimulating intrinsic and extrinsic apoptosis-signaling pathways with venetoclax and eftoza, respectively, enhanced their activities in AML cell lines and patient-derived ex vivo/in vivo models.

View Article and Find Full Text PDF

Background/aim: The therapeutic potential of bromodomain and extra-terminal motif (BET) inhibitors in hematological cancers has been well established in preclinical and early-stage clinical trials, although as of yet, no BETtargeting agent has achieved approval. To add insight into potential response to mivebresib (ABBV-075), a broadspectrum BET inhibitor, co-clinical modeling of individual patient biopsies was conducted in the context of a Phase I trial in acute myeloid leukemia (AML).

Materials And Methods: Co-clinical modeling involves taking the patient's biopsy and implanting it in mice with limited passage so that it closely retains the original characteristics of the malignancy and allows comparisons of response between animal model and clinical data.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a heterogenous malignancy driven by genetic and epigenetic factors. Inhibition of bromodomain and extraterminal (BET) proteins, epigenetic readers that play pivotal roles in the regulation of genes relevant to cancer pathogenesis, constitutes a novel AML treatment approach.

Methods: In this first-in-human study of the pan-BET inhibitor mivebresib as monotherapy (MIV-mono) or in combination with venetoclax (MIV-Ven), the safety profile, efficacy, and pharmacodynamics of mivebresib were determined in patients with relapsed/refractory AML (ClinicalTrials.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is thought to progress from a series of precursor lesions in the fallopian tube epithelium (FTE). One of the preneoplastic lesions found in the FTE is called a secretory cell outgrowth (SCOUT), which is partially defined by a loss of paired box 2 (PAX2). In the present study, we developed PAX2-deficient murine cell lines in order to model a SCOUT and to explore the role of PAX2 loss in the etiology of HGSOC.

View Article and Find Full Text PDF

The signaling events involved in the onset of ovarian cancer from the fallopian tube epithelium (FTE) are crucial for early detection and treatment of the disease, but they remain poorly defined. Conditional homozygous knockout of PTEN mediated by PAX8-cre recombinase was sufficient to drive endometrioid and serous borderline ovarian carcinoma, providing the first model of FTE-derived borderline tumors. In addition, heterozygous PTEN deletion in the FTE resulted in hyperplasia, providing a model to study early events of human ovarian pathogenesis.

View Article and Find Full Text PDF

Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated.

View Article and Find Full Text PDF

Background: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.

View Article and Find Full Text PDF