Publications by authors named "Dimosthenis Kyriazis"

The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT data sources and Electronic Health Record (EHR) systems. Based on the advancements in data science and Machine Learning (ML), an improved ability to integrate and process the so-called primary and secondary data fosters the provision of real-time and personalized decisions. In that direction, an innovative mechanism for processing and integrating health-related data is introduced in this article.

View Article and Find Full Text PDF

Text categorization and sentiment analysis are two of the most typical natural language processing tasks with various emerging applications implemented and utilized in different domains, such as health care and policy making. At the same time, the tremendous growth in the popularity and usage of social media, such as Twitter, has resulted on an immense increase in user-generated data, as mainly represented by the corresponding texts in users' posts. However, the analysis of these specific data and the extraction of actionable knowledge and added value out of them is a challenging task due to the domain diversity and the high multilingualism that characterizes these data.

View Article and Find Full Text PDF

Given the challenge that healthcare related data are being obtained from various sources and in divergent formats there is an emerging need for providing improved and automated techniques and technologies that perform qualification and standardization of these data. The approach presented in this paper introduces a novel mechanism for the cleaning, qualification, and standardization of the collected primary and secondary data types. The latter is realized through the design and implementation of three (3) integrated subcomponents, the Data Cleaner, the Data Qualifier, and the Data Harmonizer that are further evaluated by performing data cleaning, qualification, and harmonization on top of data related to Pancreatic Cancer to further develop enhanced personalized risk assessment and recommendations to individuals.

View Article and Find Full Text PDF

Due to the challenges and restrictions posed by COVID-19 pandemic, technology and digital solutions played an important role in the rendering of necessary healthcare services, notably in medical education and clinical care. The aim of this scoping review was to analyze and sum up the most recent developments in Virtual Reality (VR) use for therapeutic care and medical education, with a focus on training medical students and patients. We identified 3743 studies, of which 28 were ultimately selected for the review.

View Article and Find Full Text PDF

Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease.

View Article and Find Full Text PDF

Sharing of personal health data could facilitate and enhance the quality of care and the conduction of further research studies. However, these data are still underutilized due to legal, technical, and interoperability challenges, whereas the data subjects are not able to manage, interact, and decide on what to share, with whom, and for what purposes. This barrier obstacles continuity of care across in the European Union (EU), and neither healthcare providers nor data researchers nor the citizens are benefiting through efficient healthcare treatment and research.

View Article and Find Full Text PDF

Small Medium Enterprises (SMEs) are vital to the global economy and all societies. However, they face a complex and challenging environment, as in most sectors they are lagging behind in their digital transformation. Banks, retaining a variety of data of their SME customers to perform their main activities, could offer a solution by leveraging all available data to provide a Business Financial Management (BFM) toolkit to their customers, providing value added services on top of their core business.

View Article and Find Full Text PDF

Despite the availability of secure electronic data transfers, most medical information is still stored on paper, and it is usually shared by mail, fax or the patients themselves. Today's technologies aim to the challenge of sharing healthcare information, since exchanging inaccurate data leads to inefficiency and errors. Currently, there exist numerous techniques for exchanging data, which however require continuous internet connection, thus lacking generic applicability in healthcare, in the cases where no internet connection is available.

View Article and Find Full Text PDF

Big Data has proved to be vast and complex, without being efficiently manageable through traditional architectures, whereas data analysis is considered crucial for both technical and non-technical stakeholders. Current analytics platforms are siloed for specific domains, whereas the requirements to enhance their use and lower their technicalities are continuously increasing. This paper describes a domain-agnostic single access autoscaling Big Data analytics platform, namely Diastema, as a collection of efficient and scalable components, offering user-friendly analytics through graph data modelling, supporting technical and non-technical stakeholders.

View Article and Find Full Text PDF

With the available data in healthcare, healthcare organizations and practitioners require interoperable, efficient, and non-time-consuming data exchange. Currently, several cases aim to the exchanged data security, without considering the complexity of the data to be exchanged. This paper provides an Ontology-driven Data Cleaning mechanism, facilitating Lossless Healthcare Data Compression to efficiently compress healthcare data of different nature (textual, audio, image).

View Article and Find Full Text PDF

Unlabelled: Determining and minimizing risk exposure pose one of the biggest challenges in the financial industry as an environment with multiple factors that affect (non-)identified risks and the corresponding decisions. Various estimation metrics are utilized towards robust and efficient risk management frameworks, with the most prevalent among them being the Value at Risk (VaR). VaR is a valuable risk-assessment approach, which offers traders, investors, and financial institutions information regarding risk estimations and potential investment insights.

View Article and Find Full Text PDF

Each device, organization, or human, is affected by the effects of Big Data. Analysing these vast amounts of data can be considered of vital importance, surrounded by many challenges. To address a portion of these challenges, a Data Cleaning approach is being proposed, designed to filter the non-important data.

View Article and Find Full Text PDF

Current technologies provide the ability to healthcare practitioners and citizens, to share and analyse healthcare information, thus improving the patient care quality. Nevertheless, European Union (EU) citizens have very limited control over their own health data, despite that several countries are using national or regional Electronic Health Records (EHRs) for realizing virtual or centralized national repositories of citizens' health records. Health Information Exchange (HIE) can greatly improve the completeness of patients' records.

View Article and Find Full Text PDF

Healthcare 4.0 demands healthcare data to be shaped into a common standardized and interoperable format for achieving more efficient data exchange. What is also needed is for this healthcare data to be both easily stored and securely accessed from anywhere, and vice versa.

View Article and Find Full Text PDF

Healthcare 4.0 demands healthcare data to be shaped into a common standardized and interoperable format for achieving more efficient data exchange. Most of the techniques addressing this domain are dealing only with specific cases of data transformation through the translation of healthcare data into ontologies, which usually result in clinical misinterpretations.

View Article and Find Full Text PDF

Introduction: NCDs (non-communicable diseases) are considered an important social issue and a financial burden to the health care systems in the EU which can be decreased if cost-effective policies are implemented, along with proactive interventions. The CrowdHEALTH project recognizes that NCD poses a burden for the healthcare sector and society and aims at focusing on NCDs' public health policies.

Aim: The aim of this paper is to present the concept of Public Health Policy (PHP), elaborate on the state-of-the-art of PHPs development, and propose a first approach to the modeling and evaluation of PHPs used in a toolkit that is going to support decision making, the Policy Development Toolkit (PDT).

View Article and Find Full Text PDF

Introduction: With the expansion of available Information and Communication Technology (ICT) services, a plethora of data sources provide structured and unstructured data used to detect certain health conditions or indicators of disease. Data is spread across various settings, stored and managed in different systems. Due to the lack of technology interoperability and the large amounts of health-related data, data exploitation has not reached its full potential yet.

View Article and Find Full Text PDF

Introduction: Healthcare information systems' (HIS) lack of interoperability remains a challenge and a barrier for important health-related events detection. While relevant techniques are based on medical standards and technologies, these techniques do not follow a holistic approach. The creation of a set of tools that fulfils the needs of interoperability is needed.

View Article and Find Full Text PDF

Introduction: With With the proliferation of available ICT services, several sensors and health applications have become ubiquitous, while many applications have been developed to detect certain health conditions and early signs of disease. Currently, all these services operate independently, and the available data is heterogeneous with limited value gained from its exploitation.

Aim: The Data Sources and Gateways component aims at providing an abstracted and unified API to support the data accumulation from various sources including healthcare organisations, biosensors, laboratories and mobile applications.

View Article and Find Full Text PDF

Background And Objective: Healthcare systems deal with multiple challenges in releasing information from data silos, finding it almost impossible to be implemented, maintained and upgraded, with difficulties ranging in the technical, security and human interaction fields. Currently, the increasing availability of health data is demanding data-driven approaches, bringing the opportunities to automate healthcare related tasks, providing better disease detection, more accurate prognosis, faster clinical research advance and better fit for patient management. In order to share data with as many stakeholders as possible, interoperability is the only sustainable way for letting systems to talk with one another and getting the complete image of a patient.

View Article and Find Full Text PDF

Background And Objective: Healthcare 4.0 is being hailed as the current industrial revolution in the healthcare domain, dealing with billions of heterogeneous IoT data sources that are connected over the Internet and aim at providing real-time health-related information for citizens and patients. It is of major importance to utilize an automated way to identify the quality levels of these data sources, in order to obtain reliable health data.

View Article and Find Full Text PDF

It is an undeniable fact that Internet of Things (IoT) technologies have become a milestone advancement in the digital healthcare domain, since the number of IoT medical devices is grown exponentially, and it is now anticipated that by 2020 there will be over 161 million of them connected worldwide. Therefore, in an era of continuous growth, IoT healthcare faces various challenges, such as the collection, the quality estimation, as well as the interpretation and the harmonization of the data that derive from the existing huge amounts of heterogeneous IoT medical devices. Even though various approaches have been developed so far for solving each one of these challenges, none of these proposes a holistic approach for successfully achieving data interoperability between high-quality data that derive from heterogeneous devices.

View Article and Find Full Text PDF

The aim of this paper is to present examples of big data techniques that can be applied on Holistic Health Records (HHR) in the context of the CrowdHEALTH project. Real-time big data analytics can be performed on the stored data (i.e.

View Article and Find Full Text PDF

Current healthcare services promise improved life-quality and care. Nevertheless, most of these entities operate independently due to the ingested data' diversity, volume, and distribution, maximizing the challenge of data processing and exchange. Multi-site clinical healthcare organizations today, request for healthcare data to be transformed into a common format and through standardized terminologies to enable data exchange.

View Article and Find Full Text PDF

Current medical systems need to be able to communicate complex and detailed medical data securely and efficiently. However, the quantity of available healthcare data is rising rapidly, far exceeding the capacity to deliver personal or public health benefits from analyzing this data. Thus, a substantial overhaul of methodology is required to address the real complexity of health.

View Article and Find Full Text PDF