We study and characterize the topology of connectivity circuits observed in natively folded protein structures whose coordinates are deposited in the Protein Data Bank (PDB). Polypeptide chains of some proteins naturally fold into unique knotted configurations. Another kind of nontrivial topology of polypeptide chains is observed when, in addition to covalent bonds connecting consecutive amino acids in polypeptide chains, one also considers disulfide and ionic bonds between non-consecutive amino acids.
View Article and Find Full Text PDFKnots in the human genome would greatly impact diverse cellular processes ranging from transcription to gene regulation. To date, it has not been possible to directly examine the genome in vivo for the presence of knots. Recently, methods for serial fluorescent in situ hybridization have made it possible to measure the three-dimensional position of dozens of consecutive genomic loci in vivo.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is a devastating malignancy with poor prognosis. Reliable biomarkers for MPM diagnosis, monitoring, and prognosis are needed. The aim of this study was to identify genes associated with wound healing processes whose expression could serve as a prognostic factor in MPM patients.
View Article and Find Full Text PDFIt has been a puzzle how decondensed interphase chromosomes remain essentially unknotted. The natural expectation is that in the presence of type II DNA topoisomerases that permit passages of double-stranded DNA regions through each other, all chromosomes should reach the state of topological equilibrium. The topological equilibrium in highly crowded interphase chromosomes forming chromosome territories would result in formation of highly knotted chromatin fibres.
View Article and Find Full Text PDFThe KnotProt 2.0 database (the updated version of the KnotProt database) collects information about proteins which form knots and other entangled structures. New features in KnotProt 2.
View Article and Find Full Text PDFSummary: The backbone of most proteins forms an open curve. To study their entanglement, a common strategy consists in searching for the presence of knots in their backbones using topological invariants. However, this approach requires to close the curve into a loop, which alters the geometry of curve.
View Article and Find Full Text PDFIn this paper we introduce a method that offers a detailed overview of the entanglement of an open protein chain. Further, we present a purely topological model for classifying open protein chains by also taking into account any bridge involving the backbone. To this end, we implemented the concepts of planar knotoids and bonded knotoids.
View Article and Find Full Text PDFWe study here global and local entanglements of open protein chains by implementing the concept of knotoids. Knotoids have been introduced in 2012 by Vladimir Turaev as a generalization of knots in 3-dimensional space. More precisely, knotoids are diagrams representing projections of open curves in 3D space, in contrast to knot diagrams which represent projections of closed curves in 3D space.
View Article and Find Full Text PDF