Publications by authors named "Dimitris Theofilatos"

Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation.

View Article and Find Full Text PDF

Here, we describe steps to isolate mature thymic T cell subsets, namely CD4 single positive (SP), CD8 SP, and invariant natural killer T (iNKT) cells starting from murine total thymocytes using fluorescence-activated cell sorting. We detail protocols to study gene expression by RNA-seq and assess binding of transcription factors across the genome using CUT&RUN. This approach deciphers the molecular principles that govern T cell lineage specification and function.

View Article and Find Full Text PDF

TET proteins mediate DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other oxidative derivatives. We have previously demonstrated a dynamic enrichment of 5hmC during T and invariant natural killer T cell lineage specification. Here, we investigate shared signatures in gene expression of DKO CD4 single positive (SP) and iNKT cells in the thymus.

View Article and Find Full Text PDF

Background: High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection.

Objective: The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection.

View Article and Find Full Text PDF

Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5' deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells.

View Article and Find Full Text PDF

Objective: Ankylosing spondylitis (AS) is a chronic inflammatory disease associated with increased risk of cardiovascular disease (CVD). High-density lipoprotein (HDL) exerts a series of antiatherogenic properties and protects from CVD. We evaluated whether HDL antiatherogenic properties are impaired in patients with AS.

View Article and Find Full Text PDF

Impaired insulin sensitivity (insulin resistance) is a common denominator in many metabolic disorders, exerting pleiotropic effects on skeletal muscle, liver, and adipose tissue function. Heme oxygenase-1 (HOX-1), the rate-limiting enzyme in heme catabolism, has recently been shown to confer an antidiabetic effect while regulating cellular redox-buffering capacity. Therefore, in the present study, we probed into the mechanisms underlying the effect of insulin on HOX-1 in C2 skeletal myoblasts.

View Article and Find Full Text PDF