The introduction of methyl groups on arginine residues is catalysed by Protein Arginine Methyltransferases (PRMTs). However, the regulatory mechanisms that dictate the levels of protein arginine methylation within cells are still not completely understood. We employed Synthetic Dosage Lethality (SDL) screening in , for the identification of putative regulators of arginine methylation mediated by Hmt1 (HnRNP methyltransferase 1), ortholog of human PRMT1.
View Article and Find Full Text PDFHistone modifications are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular phenotypes. Over the past decade, a growing number of studies have indicated that changes in various histone modifications have a significant influence on the aging process. Furthermore, it has been revealed that the abundance and localization of histone modifications are responsive to various environmental stimuli, such as diet, which can also affect gene expression and lifespan.
View Article and Find Full Text PDFBackground: Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant.
View Article and Find Full Text PDFChanges in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan.
View Article and Find Full Text PDFPost-translational modifications of histones play a key role in DNA-based processes, like transcription, by modulating chromatin structure. N-terminal acetylation is unique among the numerous histone modifications because it is deposited on the N-alpha amino group of the first residue instead of the side-chain of amino acids. The function of this modification and its interplay with other internal histone marks has not been previously addressed.
View Article and Find Full Text PDF