Biosensors (Basel)
October 2022
Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized.
View Article and Find Full Text PDFAn optical immunosensor based on White Light Reflectance Spectroscopy is described for the determination of the herbicide glyphosate in drinking water samples. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO/Si chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. Glyphosate determination is accomplished by functionalizing the chip with a protein conjugate of the herbicide followed by a competitive immunoassay format.
View Article and Find Full Text PDFBiosensing through White Light Reflectance Spectroscopy (WLRS) is based on monitoring the shift of interference spectrum due to the binding reactions occurring on top of a thin SiO layer deposited on a silicon chip. Multi-analyte determinations were possible through scanning of a single sensor chip on which multiple bioreactive areas have been created. Nonetheless, the implementation of moving parts increased the instrumentation size and complexity and limited the potential for on-site determinations.
View Article and Find Full Text PDFThe detection of DNA hybridization using capacitive readout and a biosensor array of ultrathin Si membranes is presented. The biosensor exploits the ability of the ultrathin membranes to deflect upon surface stress variations caused by biological interactions. Probe DNA molecules are immobilized on the membrane surface and the surface stress variations during hybridization with their complementary strands force the membrane to deflect and effectively change the capacitance between the flexible membrane and the fixed substrate.
View Article and Find Full Text PDF