Structural batteries and supercapacitors combine energy storage and structural functionalities in a single unit, leading to lighter and more efficient electric vehicles. However, conventional electrodes for batteries and supercapacitors are optimized for high energy storage and suffer from poor mechanical properties. More specifically, commercial lithium-ion battery anodes and cathodes demonstrate tensile strength values <4 MPa and Young's modulus of <1 GPa.
View Article and Find Full Text PDFProc Math Phys Eng Sci
August 2020
Magnetic shape memory alloys (MSMAs) have drawn significant research attention as potential high actuation energy multi-functional materials. Such a dissipative material system can be considered as a solid continuum interacting with a magnetic field. A continuum-based phenomenological model provides a magneto-mechanical system of equations that simulates and predicts primary MSMA behaviours.
View Article and Find Full Text PDFStrong electrodes with good energy storage capabilities are necessary to accommodate the current needs for structural and flexible electronics. To this end, conjugated polymers such as polyaniline (PANI) have attracted much attention due to their exceptional energy storage performance. However, PANI is typically brittle and requires the use of substrates for structural support.
View Article and Find Full Text PDFIn this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments.
View Article and Find Full Text PDFInterfacial slip mechanisms of strain energy dissipation and vibration damping of highly aligned carbon nanotube (CNT) reinforced polymer composites were studied through experimentation and complementary micromechanics modeling. Experimentally, we have developed CNT-polystyrene (PS) composites with a high degree of CNT alignment via a combination of twin-screw extrusion and hot-drawing. The aligned nanocomposites enabled a focused study of the interfacial slip mechanics associated with shear stress concentrations along the CNT-PS interface induced by the elastic mismatch between the filler and matrix.
View Article and Find Full Text PDFMicrotubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer.
View Article and Find Full Text PDF