Publications by authors named "Dimitris C Kanellis"

Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response.

View Article and Find Full Text PDF

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53.

View Article and Find Full Text PDF

Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo.

View Article and Find Full Text PDF

The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions.

View Article and Find Full Text PDF

Background: High-grade gliomas are malignant brain tumors characterized by aggressiveness and resistance to chemotherapy. Prognosis remains dismal, highlighting the need to identify novel molecular dependencies and targets. Ribosome biogenesis (RiBi), taking place in the nucleolus, represents a promising target as several cancer types rely on high RiBi rates to sustain proliferation.

View Article and Find Full Text PDF

Eukaryotic initiation factor 4A-III (eIF4A3), a core helicase component of the exon junction complex, is essential for splicing, mRNA trafficking, and nonsense-mediated decay processes emerging as targets in cancer therapy. Here, we unravel eIF4A3's tumor-promoting function by demonstrating its role in ribosome biogenesis (RiBi) and p53 (de)regulation. Mechanistically, eIF4A3 resides in nucleoli within the small subunit processome and regulates rRNA processing via R-loop clearance.

View Article and Find Full Text PDF

We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class.

View Article and Find Full Text PDF

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance.

View Article and Find Full Text PDF

Pharmacological inhibition of ribosome biogenesis is a promising avenue for cancer therapy. Herein, we report a novel activity of the FDA-approved antimalarial drug amodiaquine which inhibits rRNA transcription, a rate-limiting step for ribosome biogenesis, in a dose-dependent manner. Amodiaquine triggers degradation of the catalytic subunit of RNA polymerase I (Pol I), with ensuing RPL5/RPL11-dependent stabilization of p53.

View Article and Find Full Text PDF

Lung cancer is a heterogeneous disease at both clinical and molecular levels, posing conceptual and practical bottlenecks in defining key pathways affecting its initiation and progression. Molecules with a central role in lung carcinogenesis are likely to be targeted by multiple deregulated pathways and may have prognostic, predictive, and/or therapeutic value. Here, we report that Tumor Progression Locus 2 (TPL2), a kinase implicated in the regulation of innate and adaptive immune responses, fulfils a role as a suppressor of lung carcinogenesis and is subject to diverse genetic and epigenetic aberrations in lung cancer patients.

View Article and Find Full Text PDF

The activation of mitogen-activated protein kinases (MAPKs) is critically involved in inflammatory and oncogenic events. Tumor progression locus 2 (Tpl2), also known as COT and MAP3 kinase 8 (MAP3K8), is a serine-threonine kinase with an important physiological role in tumor necrosis factor, interleukin-1, CD40, Toll-like receptor and G protein-coupled receptor-mediated ERK MAPK signaling. Whilst the full characterization of the biochemical events that lead to the activation of Tpl2 still represent a major challenge, genetic and molecular evidence has highlighted interesting interactions with the NF-κB network.

View Article and Find Full Text PDF