Background: Standardized patient-specific pretreatment dosimetry planning is mandatory in the modern era of nuclear molecular radiotherapy, which may eventually lead to improvements in the final therapeutic outcome. Only a comprehensive definition of a dosage therapeutic window encompassing the range of absorbed doses, that is, helpful without being detrimental can lead to therapy individualization and improved outcomes. As a result, setting absorbed dose safety limits for organs at risk (OARs) requires knowledge of the absorbed dose-effect relationship.
View Article and Find Full Text PDFBackground: Texture analysis has been increasingly used in the field of positron emission tomography (PET)/computed tomography (CT) imaging with Fluorine-18 fluorodeoxyglucose (18F-FDG), aiming at assessing tumor heterogeneity. The purpose of the present study is to examine the feasibility of performing texture analysis in carotid arteries, investigate the value of textural features as predictors of potential plaque vulnerability using as reference standards histological and immunohistochemical data and compare their performance with conventional uptake measurements.
Methods: 67 different 18F-FDG PET-based textural features were extracted from carotid images of 21 patients with high-grade carotid stenosis undergoing endarterectomy.