Constructed wetlands (CWs) have been extensively used in Cr(VI) removal and have proven their ability to achieve high removal efficiencies. Although, numerous studies have been published in the past years presenting experimental results of CWs treating wastewater with Cr(VI) concentrations, a mathematical modeling describing the processes for Cr(VI) removal in CWs is lacking. In this work a mathematical model was developed, able to accurately describe the main mechanisms and reactions (i.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Palygorskite sample (Pal) underwent thermal treatment at 400 °C (T-Pal) to be used as adsorbent for the removal of 200 mg NH-N/L from artificial solution. After thermal treatment, the sample was characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). For NH-N removal, T-Pal was added as a bed matrix in fixed-bed reactor experiments and the effect of flow rate was determined.
View Article and Find Full Text PDFRaw and modified fibrous clay minerals palygorskite (Pal) and sepiolite (Sep) were tested for their ability to remove ammonium from ammonium polluted water. Palygorskite and sepiolite underwent thermal treatment at 400°C (T-Pal and T-Sep respectively). Raw and thermally treated samples were characterized using XRD, SEM, BET, FTIR, TGA, zeta potential, and XRF.
View Article and Find Full Text PDFA mixed cyanobacterial-mixotrophic algal population, dominated by the filamentous cyanobacterium Leptolyngbya sp. and the microalga Ochromonas (which contributed to the total photosynthetic population with rates of less than 5%), was studied under non-aseptic conditions for its efficiency to remove organic and inorganic compounds from different types of wastes/wastewaters while simultaneously producing lipids. Second cheese whey, poplar sawdust, and grass hydrolysates were used in lab-scale experiments, in photobioreactors that operated under aerobic conditions with different initial nutrient (C, N and P) concentrations.
View Article and Find Full Text PDFThe use of Constructed Wetlands (CWs) has been nowadays expanded from municipal to industrial and agro-industrial wastewaters. The main limitations of CWs remain the relatively high area requirements compared to mechanical treatment technologies and the potential occurrence of the clogging phenomenon. This study presents the findings of an innovative CW design where novel materials were used.
View Article and Find Full Text PDFThe production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost.
View Article and Find Full Text PDFThe present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes.
View Article and Find Full Text PDFThe present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted.
View Article and Find Full Text PDFIn the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.
View Article and Find Full Text PDFThe bioreduction of hexavalent chromium from aqueous solution was carried out using suspended growth and packed-bed reactors under a draw-fill operating mode, and horizontal subsurface constructed wetlands. Reactors were inoculated with industrial sludge from the Hellenic Aerospace Industry using sugar as substrate. In the suspended growth reactors, the maximum Cr(VI) reduction rate (about 2 mg/L h) was achieved for an initial concentration of 12.
View Article and Find Full Text PDF