The current COVID-19 pandemic is leading to significant changes in terms of people's economic behavior, which will inevitably impact the tourism industry and tourism activity both worldwide and in tourism host countries. Immediate control measures, such as necessary restrictions on travel, avoiding physical contact, social distancing, as well as tourists' and patients' changes in priority making, have vanished interest in traveling away from the place of usual residence and seeking to receive tourism services. COVID-19 pandemic has caused immediate impacts across the whole spectrum of economic and social activity.
View Article and Find Full Text PDFIn recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing.
View Article and Find Full Text PDFMicroRNAs are small, non-coding RNAs that negatively regulate gene expression. It has been proposed that microRNAs could function in the regulation of innate immunity, but this has not been demonstrated for viral infection. Here we test this hypothesis using the human pathogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and one of its putative natural cellular targets, primary lymphatic endothelial cells (LECs).
View Article and Find Full Text PDFKaposi sarcoma herpesvirus (KSHV) induces transcriptional reprogramming of endothelial cells. In particular, KSHV-infected lymphatic endothelial cells (LECs) show an up-regulation of genes associated with blood vessel endothelial cells (BECs). Consequently, KSHV-infected tumor cells in Kaposi sarcoma are poorly differentiated endothelial cells, expressing markers of both LECs and BECs.
View Article and Find Full Text PDFIncreased expression of Notch signaling pathway components is observed in Kaposi sarcoma (KS) but the mechanism underlying the manipulation of the canonical Notch pathway by the causative agent of KS, Kaposi sarcoma herpesvirus (KSHV), has not been fully elucidated. Here, we describe the mechanism through which KSHV directly modulates the expression of the Notch ligands JAG1 and DLL4 in lymphatic endothelial cells. Expression of KSHV-encoded vFLIP induces JAG1 through an NFkappaB-dependent mechanism, while vGPCR upregulates DLL4 through a mechanism dependent on ERK.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) is causally related to Kaposi's sarcoma (KS), the most common malignancy in untreated individuals with HIV/AIDS. The adaptive T-cell immune response against KSHV has not been fully characterized. To achieve a better understanding of the antigenic repertoire of the CD8 and CD4 T-cell responses against KSHV, we constructed a library of lentiviral expression vectors each coding for one of 31 individual KSHV open reading frames (ORFs).
View Article and Find Full Text PDFThe involvement of Toll-like receptor 4 (TLR4) in immunity against human herpesviruses has not been previously demonstrated. We show that infection of endothelial cells with Kaposi sarcoma herpesvirus (KSHV), a human oncogenic virus, leads to rapid suppression of TLR4 expression. This is a mechanism of immune escape as TLR4 mediates innate immunity against KSHV.
View Article and Find Full Text PDFBackground: Burkitt lymphoma, a childhood cancer common in parts of sub-Saharan Africa, has been associated with Epstein Barr Virus (EBV) and malaria, but its association with human immunodeficiency virus (HIV) is not clear.
Methodology/principal Findings: We conducted a case-control study of Burkitt lymphoma among children (aged < or = 15 years) admitted to the pediatric oncology unit in Blantyre, Malawi between July 2005 and July 2006. Cases were 148 children diagnosed with Burkitt lymphoma and controls were 104 children admitted with non-malignant conditions or cancers other than hematological malignancies and Kaposi sarcoma.
Kaposi's sarcoma (KS) is caused by Kaposi's sarcoma-associated herpesvirus (KSHV) and consists of proliferating spindle cells, which are related to lymphatic endothelial cells (LEC). Angiopoietin-2 (Ang2) is a secreted proangiogenic and lymphangiogenic molecule. Here, we show the expression of Ang2 protein in KS and confirm that KSHV infection up-regulates Ang2 in LEC.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
February 2007
Kaposi sarcoma is the most common cancer among HIV-infected individuals and one of the most common cancers in sub-Saharan Africa. Kaposi sarcoma lesions are highly vascularized, and comprised of spindle-shaped tumor cells. Kaposi sarcoma herpesvirus is etiologically linked to Kaposi sarcoma development and encodes genes that contribute to cellular transformation, evasion of apoptosis, aberrant angiogenesis and an inflammatory tumor microenvironment.
View Article and Find Full Text PDFKaposi sarcoma-associated herpesvirus (KSHV) is etiologically linked to Kaposi sarcoma (KS), a tumor genetically akin to lymphatic endothelial cells (LECs). We obtained the immune transcriptional signature of KS and used KSHV-infected LECs (KLECs) as an in vitro model to determine the effects of KSHV on transcription and expression of genes involved in immunity. The antigen presentation, interferon (IFN) response, and cytokine transcriptomes of KLECs resemble those of KS.
View Article and Find Full Text PDFHere we report the isolation and characterization of the olive fruit fly Bactrocera oleae genes orthologous to the Drosophila melanogaster sex-determining genes Sex-lethal (Sxl) and doublesex (dsx). Fragments of the Sxl and dsx orthologous were isolated with RT-PCR. Genomic and cDNA clones were then obtained by screening a genomic library and separate male and female cDNA adult libraries using the RT-PCR products as probes in both cases.
View Article and Find Full Text PDFThe biology of Kaposi sarcoma is poorly understood because the dominant cell type in Kaposi sarcoma lesions is not known. We show by gene expression microarrays that neoplastic cells of Kaposi sarcoma are closely related to lymphatic endothelial cells (LECs) and that Kaposi sarcoma herpesvirus (KSHV) infects both LECs and blood vascular endothelial cells (BECs) in vitro. The gene expression microarray profiles of infected LECs and BECs show that KSHV induces transcriptional reprogramming of both cell types.
View Article and Find Full Text PDFObjective: To investigate the effect of highly active antiretroviral therapy (HAART) on Kaposi sarcoma-associated herpesvirus (KSHV) DNA load, anti-KSHV antibody responses and KSHV-specific CD8 T cell responses in HIV-infected individuals over a 2 year period.
Design: Prospective study of 27 HIV-infected antiretroviral therapy-naive individuals, with (n = 4) and without KS (n = 23), before HAART and at 3-month intervals, during treatment with HAART.
Methods: Sequential blood samples were collected for anti-KSHV antibody detection, KSHV DNA load in peripheral blood mononuclear cells (PBMC) and plasma, HIV Gag-specific and KSHV-specific CD8 T cell responses, HIV-1 plasma RNA load and CD4 and CD8 T cell counts.
This report describes the selection of highly efficient antibody catalysts by combining chemical selection from a synthetic library with directed in vitro protein evolution. Evolution started from a naive antibody library displayed on phage made from fully synthetic, antibody-encoding genes (the Human Combinatorial Antibody Library; HuCAL-scFv). HuCAL-scFv was screened by direct selection for catalytic antibodies exhibiting phosphatase turnover.
View Article and Find Full Text PDF