Timely damage detection on a mechanical system can prevent the appearance of catastrophic damage in it, as well as allow for better scheduling of its maintenance and repair process. For this purpose, multiple signal analysis methods have been developed to help identify anomalies in a system, through quantities such as vibrations or deformations in its critical components. In most applications, however, these data may be scarce or inexistent, hindering the overall process.
View Article and Find Full Text PDFA methodology for optimal sensor placement is presented in the current work. This methodology incorporates a damage detection framework with simulated damage scenarios and can efficiently provide the optimal combination of sensor locations for vibration-based damage localization purposes. A classic approach in vibration-based methods is to decide the sensor locations based, either directly or indirectly, on the modal information of the structure.
View Article and Find Full Text PDFVibration-based damage detection methods are a subcategory of Structural Health Monitoring (SHM) methods that rely on the fact that structural damage will affect the dynamic characteristic of a structure. The presented methodology uses Finite Element Models coupled with a metaheuristic optimization algorithm in order to locate the damage in a structure. The search domains of the optimization algorithm are the variables that control a parametric area, which is inserted into the FE model.
View Article and Find Full Text PDFThe continuous development of new materials and larger and/or more complex structures drives the need for the development of more robust, accurate, and sensitive Structural Health Monitoring (SHM) techniques. In the present work, a novel vibration-based damage-detection method that contributes into the SHM field is presented using Metaheuristic algorithms coupled with optimal Finite Element Models that can effectively localize damage. The proposed damage-detection framework can be applied in any kind of detailed structural FE model, while requiring only the output information of the dynamic response of the structure.
View Article and Find Full Text PDF