Publications by authors named "Dimitrios F Anagnostopoulos"

Scanning micrο X-ray fluorescence (μ-XRF) and multispectral imaging (MSI) were applied to study philately stamps, selected for their small size and intricate structures. The μ-XRF measurements were accomplished using the M6 Jetstream Bruker scanner under optimized conditions for spatial resolution, while the MSI measurements were performed employing the XpeCAM-X02 camera. The datasets were acquired asynchronously.

View Article and Find Full Text PDF

X-ray fluorescence (XRF) spectrometry has proven to be a core, non-destructive, analytical technique in cultural heritage studies mainly because of its non-invasive character and ability to rapidly reveal the elemental composition of the analyzed artifacts. Being able to penetrate deeper into matter than the visible light, X-rays allow further analysis that may eventually lead to the extraction of information that pertains to the substrate(s) of an artifact. The recently developed scanning macroscopic X-ray fluorescence method (MA-XRF) allows for the extraction of elemental distribution images.

View Article and Find Full Text PDF

Excavations at the Kynos settlement, a Homeric site and the home of an early school of key Greek pictorial pottery painting, revealed extensive remains of several chronological horizons which continuously span the period from Middle Helladic (∼2100 BC) to Byzantine times (330 AD onwards), along with thousands of decorated sherds. The scope of the present study is the exploration of the technological traits of this pottery, which would contribute substantially to the archaeological understanding of the site. Samples from a sizeable assembly of decorated sherds were studied by means of analytical techniques, i.

View Article and Find Full Text PDF

The reaction of mixtures of Fe(OCMe)·2HO and Ni(OCMe)·4HO of various compositions with di-2-pyridyl ketone (pyCO, dpk) in MeCN under an inert atmosphere afforded a family of hetero-metallic enneanuclear clusters with general formula [FeNi(μ-OH)(OCMe)(pyCO)] (2, x = 1.00; 3: x = 6.02; 4, x = 7.

View Article and Find Full Text PDF

Magnetic Fe(2)O(3)/carbon hybrids were prepared in a two-step process. First, acetic acid vapor interacted with iron cations dispersed on the surface of a nanocasted ordered mesoporous carbon (CMK-3). In the second step, the primarily created iron acetate species underwent pyrolysis and transformed to magnetic iron oxide nanoparticles.

View Article and Find Full Text PDF