Publications by authors named "Dimitrios E Manolakos"

This work studies numerically the development of adiabatic shear banding (ASB) during high strain-rate compression of AISI 1045 steel. Plane strain and cylindrical axisymmetric compressions are simulated in LS-DYNA, considering rectangular and cylindrical steel samples, respectively. Also, a parametric analysis in height-to-base ratio is conducted in order to evaluate the effect of geometry and dimensional ratio of the sample on ASB formation.

View Article and Find Full Text PDF

Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-precision applications (e.g.

View Article and Find Full Text PDF

This paper investigates numerically the effect of damage evolution on adiabatic shear banding (ASB) formation and its transition to fracture during high-speed blanking of 304 stainless steel sheets. A structural-thermal-damage-coupled finite element (FE) analysis is developed in LS-DYNA considering the modified Johnson-Cook thermo-viscoplastic model for both plasticity flow rule and damage law, while further, a temperature-dependent fracture criterion is implemented by introducing a critical temperature. The modeling approach is initially validated against experimental data regarding the fracture profile and ASB width.

View Article and Find Full Text PDF

The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA), and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.

View Article and Find Full Text PDF

In the current study, a new approach for surface modification and surface hardening of aluminum alloys is developed. The method is based on the logic of in-situ reinforcing FSP strategies. The novelty of the proposed process is the application of a bulk reinforcing metallic material instead of metallic powders.

View Article and Find Full Text PDF

In the current study, a first attempt at using aluminum flakes for the manufacture of open-cell aluminum foams with the space holder method is presented. The method involves powder mixing, compaction, leaching, and sintering processes. Saccharose particles were used as space holders, and multiple parameters were investigated to optimize the manufacturing processing route in order to produce high-quality open-cell aluminum foams with a simple, economic, and environmentally friendly method.

View Article and Find Full Text PDF