We report on the chemical lithiation of long microscale helices composed of densely packed amorphous silicon (aSi) nanofibrils, fabricated by glancing angle deposition (GLAD) through e-beam evaporation. In situ electron microscopy and companion finite element modeling demonstrate that the nanofibrillar structure of the aSi helices allows for 2 orders of magnitude faster effective rates for Li diffusion ( D = 10 cm/s) compared to solid aSi nanowires, while also averting fragmentation during lithiation. More importantly, it is shown that specific helical geometries can accommodate large, lithium-induced, volumetric expansions without shape distortion.
View Article and Find Full Text PDF