Publications by authors named "Dimitrije Stepanenko"

Modern document protection relies on the simultaneous combination of many optical features with micron and submicron structures, whose complexity is the main obstacle for unauthorized copying. In that sense, documents are best protected by the diffractive optical elements generated lithographically and mass-produced by embossing. The problem is that the resulting security elements are identical, facilitating mass-production of both original and counterfeited documents.

View Article and Find Full Text PDF

We derive and study the effective spin Hamiltonian of a gated triple quantum dot that includes the effects of spin-orbit interaction and an external magnetic field. In the analysis of the resulting spin interaction in linear and in general triangular geometry of the dots, we show that the pairwise spin interaction does depend on the position of the third dot. The spin-orbit induced anisotropy, in addition to changing its strength, also changes its symmetry with the motion of the third quantum dot outside the linear arrangement.

View Article and Find Full Text PDF

We study the triangular antiferromagnet Cu3 in external electric fields, using symmetry group arguments and a Hubbard model approach. We identify a spin-electric coupling caused by an interplay between spin exchange, spin-orbit interaction, and the chirality of the underlying spin texture of the molecular magnet. This coupling allows for the electric control of the spin (qubit) states, e.

View Article and Find Full Text PDF

We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected.

View Article and Find Full Text PDF