Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes.
View Article and Find Full Text PDFThe severely ozone-depleting trichlorofluoromethane is still appearing in several recycling processes or industrial applications. A simple and selective supramolecular complex formation of -methylated α-cyclodextrin () with the highly volatile trichlorofluoromethane () is reported. This interaction moreover leads to thermally stable crystals.
View Article and Find Full Text PDFTrichlorofluoromethane was once a promising and versatile applicable chlorofluorocarbon. Unaware of its ozone-depleting character, for a long time it was globally applied as propellant and refrigerant and thus led to significant thinning of the ozone layer and contributed to the formation of the so-called ozone hole. Although production and application of this substance were gradually reduced at an early stage, we still face the consequences of its former careless use.
View Article and Find Full Text PDFResorcin[4]arene cavitands are well-known supramolecular hosts, and their outstanding guest-binding abilities in solution have been studied in detail in recent decades. In a systematic approach, different resorcin[4]arene cavitands and container molecules are characterized as affinity materials for gravimetric sensing using high-fundamental-frequency quartz crystal microbalances. Analysis of their affinity toward a series of various analytes reveals a remarkable dependence of both selectivity and sensitivity on the shape, accessibility, and size of the cavity, along with their supramolecular interactions with the host molecules.
View Article and Find Full Text PDFThe combination of an (-)-isosteviol-derived building block and 9,9'-spirobifluorene or tetraphenylmethane generated highly potent new affinity materials for the detection of volatile organic compounds (VOCs). Comparison of their affinity behaviour with different core structures showed remarkable influence on selectivity and sensitivity due to structural rigidity and their pre-organization. Their unique supramolecular properties were investigated in an affinity assay using high fundamental frequency quartz crystal microbalances.
View Article and Find Full Text PDF