Publications by authors named "Dimitri N Basov"

Generation and manipulation of phonon polaritons are of paramount importance for understanding the interaction between an electromagnetic field and dielectric materials and furthering their application in mid-infrared optical communication. However, the formation of tunable one-dimensional phonon polaritons has been rarely realized in van der Waals layered structures. Here we report the discovery of curvature-induced phonon polaritons localized at the crease of folded hexagonal boron nitrides (-BNs) with a few atomic layers using monochromated electron energy-loss spectroscopy.

View Article and Find Full Text PDF

Phonon polaritons in van der Waals materials reveal significant confinement accompanied with long propagation length: important virtues for tasks pertaining to the control of light and energy flow at the nanoscale. While previous studies of phonon polaritons have relied on relatively thick samples, here reported is the first observation of surface phonon polaritons in single atomic layers and bilayers of hexagonal boron nitride (hBN). Using antenna-based near-field microscopy, propagating surface phonon polaritons in mono- and bilayer hBN microcrystals are imaged.

View Article and Find Full Text PDF

The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high-resolution patterning of hexagonal boron nitride (h-BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) is a natural hyperbolic material that supports both volume-confined hyperbolic polaritons and sidewall-confined hyperbolic surface polaritons (HSPs). In this work, efficient excitation, control, and steering of HSPs are demonstrated in hBN through engineering the geometry and orientation of hBN sidewalls. By combining infrared nanoimaging and numerical simulations, the reflection, transmission, and scattering of HSPs are investigated at the hBN corners with various apex angles.

View Article and Find Full Text PDF

Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls.

View Article and Find Full Text PDF

Mid-infrared nanoimaging and spectroscopy of two-dimensional (2D) materials have been limited so far to scattering-type scanning near-field optical microscopy (s-SNOM) experiments, where light from the sample is scattered by a metallic-coated atomic force microscope (AFM) tip interacting with the material at the nanoscale. These experiments have recently allowed imaging of plasmon polaritons in graphene as well as hyperbolic phonon polaritons in hexagonal boron nitride (hBN). Here we show that the high mechanical sensitivity of an AFM cantilever can be exploited for imaging hyperbolic phonon polaritons in hBN.

View Article and Find Full Text PDF

We use scanning near-field optical microscopy to study the response of hexagonal boron nitride nanocones at infrared frequencies, where this material behaves as a hyperbolic medium. The obtained images are dominated by a series of "hot" rings that occur on the sloped sidewalls of the nanocones. The ring positions depend on the incident laser frequency and the nanocone shape.

View Article and Find Full Text PDF

Aluminum-doped zinc oxide (AZO) is a tunable low-loss plasmonic material capable of supporting dopant concentrations high enough to operate at telecommunication wavelengths. Due to its ultrahigh conformality and compatibility with semiconductor processing, atomic layer deposition (ALD) is a powerful tool for many plasmonic applications. However, despite many attempts, high-quality AZO with a plasma frequency below 1550 nm has not yet been realized by ALD.

View Article and Find Full Text PDF

We demonstrate both the beam-forming and imaging capabilities of an X-band (8-12 GHz) operational Lüneburg lens, one side of which has been flattened via a coordinate transformation optimized using quasi-conformal transformation optics (QCTO) procedures. Our experimental investigation includes benchmark performance comparisons between the QCTO Lüneburg lens and a commensurate conventional Lüneburg lens. The QCTO Lüneburg lens is made from a metamaterial comprised of inexpensive plastic and fiberglass, and manufactured using fast and versatile numerically controlled water-jet machining.

View Article and Find Full Text PDF

We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate.

View Article and Find Full Text PDF

Nanoscale disorder results in severe spectral misalignment of silicon microring resonators and Mach-Zehnder interferometers. We correct for such effects using electric-field-induced waveguide nano-oxidation, demonstrating a tuning wavelength range of several nanometers and 0.002 nm resolution without line shape degradation.

View Article and Find Full Text PDF

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin.

View Article and Find Full Text PDF

The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies.

View Article and Find Full Text PDF