Bioenergetic requirements of hematopoietic stem cells and pluripotent stem cells (PSCs) vary with lineage fate, and cellular adaptations rely largely on substrate (glucose/glutamine) availability and mitochondrial function to balance tricarboxylic acid (TCA)-derived anabolic and redox-regulated antioxidant functions. Heme synthesis and degradation converge in a linear pathway that utilizes TCA cycle-derived carbon in cataplerotic reactions of tetrapyrrole biosynthesis, terminated by NAD(P)H-dependent biliverdin reductases (IXα, BLVRA and IXβ, BLVRB) that lead to bilirubin generation and cellular antioxidant functions. We now demonstrate that PSCs with targeted deletion of display physiologically defective antioxidant activity and cellular viability, associated with a glutamine-restricted defect in TCA entry that was computationally predicted using gene/metabolite topological network analysis and subsequently validated by bioenergetic and isotopomeric studies.
View Article and Find Full Text PDFEssential thrombocytosis (ET) is a chronic myeloproliferative disorder with an unregulated surplus of platelets. Complications of ET include stroke, heart attack, and formation of blood clots. Although platelet-enhancing mutations have been identified in ET cohorts, genetic networks causally implicated in thrombotic risk remain unestablished.
View Article and Find Full Text PDFPurpose: Approximately 40% of infertile men have an abnormal semen analysis, resulting from either abnormalities of sperm production (defective spermatogenesis) or sperm shape (defective spermiogenesis). This latter process is dependent upon the function of Sertoli cells, which maintain specialized junctional complexes with germ cells. Nectins, members of the immunoglobulin superfamily, participate in formation of these dynamic complexes.
View Article and Find Full Text PDF