Publications by authors named "Dimitri E Grigoriadis"

Valbenazine and deutetrabenazine are vesicular monoamine transporter 2 (VMAT2) inhibitors approved for tardive dyskinesia. The clinical activity of valbenazine is primarily attributed to its only dihydrotetrabenazine (HTBZ) metabolite, [+]-α-HTBZ. Deutetrabenazine is a deuterated form of tetrabenazine and is metabolized to four deuterated HTBZ metabolites: [+]-α-deuHTBZ, [+]-β-deuHTBZ, [-]-α-deuHTBZ, and [-]-β-deuHTBZ.

View Article and Find Full Text PDF

Antipsychotic medications function by blocking postsynaptic dopaminergic signaling in the central nervous system. Dopamine transmission can also be modulated presynaptically by inhibitors of vesicular monoamine transporter 2 (VMAT2), which inhibit loading of dopamine into presynaptic vesicles. Here we investigated the combination of these mechanisms in animal models of schizophrenia and weight gain (a primary side effect of antipsychotics).

View Article and Find Full Text PDF

Valbenazine, a vesicular monoamine transporter 2 (VMAT2, SLC18A2) inhibitor, is a newly approved treatment for tardive dyskinesia. VMAT2 is present in the membrane of secretory vesicles and transports dopamine (DA), norepinephrine (NE), serotonin (5-HT), histamine, glutamate (Glu), and GABA into vesicles for presynaptic release. We utilized microdialysis in awake, freely moving mice to determine the effect of NBI-98782, the active metabolite of valbenazine, alone, or in combination with several antipsychotic drugs (APDs), to influence neurotransmitter efflux in the medial prefrontal cortex (mPFC), dorsal striatum (dSTR), hippocampus and nucleus accumbens (NAC); we also compared it with tetrabenazine, the prototypical VMAT2 inhibitor.

View Article and Find Full Text PDF

In drug discovery, it is essential to accurately measure drug-target binding affinity. Here, we revisit the fact that target binding kinetics impact the measurement of affinity, using a case study: development of corticotropin-releasing factor antagonists. Slow dissociation of the drug-target complex results in affinity assays being far from equilibrium, which results in erroneous estimates of affinity.

View Article and Find Full Text PDF

The dopaminergic system plays a key role in the central nervous system, regulating executive function, arousal, reward, and motor control. Dysregulation of this critical monoaminergic system has been associated with diseases of the central nervous system including schizophrenia, Parkinson's disease, and disorders such as attention deficit hyperactivity disorders and addiction. Drugs that modify the dopaminergic system by modulating the activity of dopamine have been successful in demonstrating clinical efficacy by providing treatments for these diseases.

View Article and Find Full Text PDF

Background: Tetrabenazine (TBZ) activity is thought to result from four isomeric dihydrotetrabenazine (HTBZ) metabolites ([+]-α-HTBZ, [-]-α-HTBZ, [+]-β-HTBZ, [-]-β-HTBZ). Each isomer has a unique profile of vesicular monoamine transporter 2 (VMAT2) inhibition and off-target binding. Previously published data only report total isomer (α) and (β) concentrations.

View Article and Find Full Text PDF

The vesicular monoamine transporter 2 (VMAT2) is an integral presynaptic protein that regulates the packaging and subsequent release of dopamine and other monoamines from neuronal vesicles into the synapse. Valbenazine (NBI-98854), a novel compound that selectively inhibits VMAT2, is approved for the treatment of tardive dyskinesia. Valbenazine is converted to two significant circulating metabolites in vivo, namely, (+)--dihydrotetrabenazine (R,R,R-HTBZ) and a mono-oxy metabolite, NBI-136110.

View Article and Find Full Text PDF

G-Protein coupled receptors (GPCRs) have been, and remain a key target of drug discovery programs for human disease. While many drugs have been developed that interact with these proteins in the simple classic manner - that is - physically blocking the cognate ligand from simply binding to its target receptor, drug discovery approaches have elucidated alternative more complex methods by which small molecules can interact with these receptors and block their function. This is most evident in the Class B GPCRs where the cognate ligands are relatively large peptides with multiple points of contact on the GPCR spanning both hydrophilic and hydrophobic domains on the same protein to elicit function.

View Article and Find Full Text PDF

Blockade of corticotropin-releasing factor receptor 1 (CRF1) suppresses stress-induced alcohol seeking in rodents, but clinical translation remains. Here, we first showed that the CRF1 antagonist verucerfont potently blocks hypothalamic-pituitary adrenal (HPA) axis activation in adrenalectomized rats. We then evaluated verucerfont for its ability to block HPA axis activation and reduce stress-induced alcohol craving in alcohol-dependent patients.

View Article and Find Full Text PDF

Context: Treatment of 21-hydroxylase deficiency (21OHD) is difficult to optimize. Normalization of excessive ACTH and adrenal steroid production commonly requires supraphysiologic doses of glucocorticoids.

Objectives: We evaluated the safety and tolerability of the selective corticotropin releasing factor type 1 (CRF1) receptor antagonist NBI-77860 in women with classic 21OHD and tested the hypothesis that CRF1 receptor blockade decreases early-morning ACTH and 17α-hydroxyprogesterone (17OHP) in these patients.

View Article and Find Full Text PDF

Aim: To assess corticotropin-releasing factor receptor 2 (CRF2) expression in the colon of healthy subjects and patients with ulcerative colitis (UC).

Methods: We examined CRF2 gene and protein expression in the distal/sigmoid colonic mucosal biopsies from healthy subjects and patients with UC (active or disease in remission), human immunodeficiency virus (HIV) and functional bowel disease (FBD) by reverse transcription-polymerase chain reaction and immunofluorescence.

Results: Gene expression of CRF2 was demonstrated in the normal human colonic biopsies, but not in the human colorectal adenocarcinoma cell line Caco2.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) receptor antagonists are under preclinical and clinical investigation for stress-related disorders. In this study the impact of receptor-ligand binding kinetics on CRF₁ receptor antagonist pharmacology was investigated by measuring the association rate constant (k₁), dissociation rate constant (k₋₁), and kinetically derived affinity at 37°C. Three aspects of antagonist pharmacology were reevaluated: comparative binding activity of advanced compounds, in vivo efficacy, and structure-activity relationships.

View Article and Find Full Text PDF

Antagonists of the corticotropin-releasing factor (CRF) neuropeptide may prove effective in treating stress and anxiety related disorders. In an effort to identify antagonists with improved physico-chemical properties a new series of CRF(1) antagonists were designed to substitute the propyl groups at the C7 position of the pyrazolo[1,5-a]pyrimidine core of 1 with heterocycles. Compound (S)-8d was identified as a high affinity ligand with a pK(i) value of 8.

View Article and Find Full Text PDF

Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood.

View Article and Find Full Text PDF

Dieting to control body weight involves cycles of deprivation from palatable food that can promote compulsive eating. The present study shows that rats withdrawn from intermittent access to palatable food exhibit overeating of palatable food upon renewed access and an affective withdrawal-like state characterized by corticotropin-releasing factor-1 (CRF(1)) receptor antagonist-reversible behaviors, including hypophagia, motivational deficits to obtain less palatable food, and anxiogenic-like behavior. Withdrawal was accompanied by increased CRF expression and CRF(1) electrophysiological responsiveness in the central nucleus of the amygdala.

View Article and Find Full Text PDF

Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics.

View Article and Find Full Text PDF

Allosteric modulators of G-protein-coupled receptors can regulate conformational states involved in receptor activation ( Mol Pharmacol 58: 1412-1423, 2000 ). This hypothesis was investigated for the corticotropin-releasing factor type 1 (CRF(1)) receptor using a novel series of ligands with varying allosteric effect on CRF binding (inhibition to enhancement). For the G-protein-uncoupled receptor, allosteric modulation of CRF binding was correlated with nonpeptide ligand signaling activity; inverse agonists inhibited and agonists enhanced CRF binding.

View Article and Find Full Text PDF

There is an extensive evidence that corticotropin releasing factor (CRF) is hypersecreted in depression and anxiety, and blockade of CRF could have therapeutic benefit. We report preclinical data and the results of a clinical Phase I study with the novel nonpeptide CRF(1) antagonist NBI-34041/SB723620. Preclinical data conducted with different cell lines expressing human CRF receptors and in Wistar and Sprague-Dawley rats indicate that NBI-34041 is effective in reducing endocrine responses to pharmacological and behavioral challenge mediated by CRF(1) receptors.

View Article and Find Full Text PDF

Cocaine addiction is an enduring, relapsing, behavioural disorder in which stressors reinstate cocaine-seeking even after prolonged abstinence. Evidence suggests that the 'anxiety-like' behaviour and stress associated with protracted withdrawal may be mediated by increased corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA), a part of the limbic circuitry engaged in the coding and transmission of stimulus-reward associations. In the present study we describe a long-lasting potentiation of glutamatergic transmission induced at lateral amygdala (LA)-to-CeA synapses by rat/human CRF.

View Article and Find Full Text PDF

Corticotropin-releasing factor agonists exert inhibitory effects in stomach functions possibly through peripheral routes. We have previously reported the expression of Urocortin (Ucn) I, an endogenous ligand of both CRF receptor types CRF(1) and CRF(2), in the human stomach. We examined CRF(1) and CRF(2) expression in the same tissue.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) and urocortins (Ucn) bind with various affinities to two G-protein-coupled receptors, CRHR1 and CRHR2, which are expressed in brain and in peripheral tissues, including immune cells. CRHR2-deficient mice display anxiety-like behavior, hypersensitivity to stress, altered feeding behavior and metabolism, and cardiovascular abnormalities. However, the phenotype of these mice in inflammatory responses has not been determined.

View Article and Find Full Text PDF

The molecular interactions between non-peptide antagonists and the corticotropin-releasing factor type 1 (CRF1) receptor are poorly understood. A CRF1 receptor mutation has been identified that reduces binding affinity of the non-peptide antagonist NBI 27914 (M276I in transmembrane domain 5). We have investigated the mechanism of the mutation's effect using a combination of peptide and non-peptide ligands and receptor mutations.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) is a neurotransmitter in Barrington's nucleus neurons. These neurons can coregulate parasympathetic tone to the bladder (to modulate micturition) and brain noradrenergic activity (to affect arousal). To identify the role of CRF in the regulation of micturition, the effects of CRF agonists and antagonists on urodynamics in the unanesthetized rat were characterized.

View Article and Find Full Text PDF

Antagonists of the corticotropin-releasing factor (CRF) neuropeptide should prove to be effective in treating stress and anxiety-related disorders. In an effort to identify antagonists with improved physicochemical properties, new tricyclic CRF(1) antagonists were designed, synthesized, and tested for biological activity. As a result of studies aimed at establishing a relationship between structure and CRF(1) binding affinity, NBI 35965 (12a) was identified as a high-affinity antagonist with a pK(i) value of 8.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) receptors have been reported to play a role in tonic colorectal distension (CRD)-induced activation of locus coeruleus (LC) neurons. We examined the influence of repeated phasic CRDs and intracisternal (ic) CRF on the spontaneous discharge rate of LC neurons in chloral hydrate-anesthetized rats and the role of CRF receptors using the nonselective CRF(1)/CRF(2) antagonist, astressin, and the water-soluble CRF(1) receptor antagonist, NBI-35965. Two consecutive phasic CRDs (43.

View Article and Find Full Text PDF