Publications by authors named "Dimitra G Darambara"

Effective X-ray photon-counting spectral imaging (x-CSI) detector design involves the optimisation of a wide range of parameters both regarding the sensor (e.g., material, thickness and pixel pitch) and electronics (e.

View Article and Find Full Text PDF

X-ray photon counting spectral imaging (x-CSI) determines a detected photon's energy by comparing the charge it induces with several thresholds, counting how many times each is crossed (the standard method, STD). This paper is the first to demonstrate that this approach can unexpectedly delete counts from the recorded energy spectrum under some clinically relevant conditions: a process we call negative counting. Four alternative counting schemes are proposed and simulated for a wide range of sensor geometries (pixel pitch 100-600 µm, sensor thickness 1-3 mm), number of thresholds (3, 5, 8, 24 and 130) and medically relevant X-ray fluxes (10-10 photons mm s).

View Article and Find Full Text PDF

This review article offers an overview of the differences between traditional energy integrating (EI) X-ray imaging and the new technique of X-ray photon counting spectral imaging (x-CSI). The review is motivated by the need to image gold nanoparticles (AuNP) in vivo if they are to be used clinically to deliver a radiotherapy dose-enhancing effect (RDEE). The aim of this work is to familiarise the reader with x-CSI as a technique and to draw attention to how this technique will need to develop to be of clinical use for the described oncological applications.

View Article and Find Full Text PDF

Most modern energy resolving, photon counting detectors employ small (sub 1 mm) pixels for high spatial resolution and low per pixel count rate requirements. These small pixels can suffer from a range of charge sharing effects (CSEs) that degrade both spectral analysis and imaging metrics. A range of charge sharing correction algorithms (CSCAs) have been proposed and validated by different groups to reduce CSEs, however their performance is often compared solely to the same system when no such corrections are made.

View Article and Find Full Text PDF

Mean glandular dose (MGD) is the figure of merit to assess breast dose after a mammographic acquisition. The use of normalized MGD obtained from Monte Carlo computations with measured incident air kerma determines the MGD delivered to patients. The Geant4 Application for Tomographic Emission (GATE) toolkit is a modern Monte Carlo application specifically designed for medical imaging systems modelling.

View Article and Find Full Text PDF

Purpose: Semiconductor detectors are increasingly considered as alternatives to scintillation crystals for nuclear imaging applications such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). One of the most prominent detector materials is cadmium zinc telluride (CZT), which is currently used in several application-specific nuclear imaging systems. In this work, the charge-transport effects in pixelated CZT detectors in relation to detector pixel size and thickness are investigated for pixels sizes from 0.

View Article and Find Full Text PDF

Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast.

View Article and Find Full Text PDF

Breast cancer screening with x-ray mammography, using one or two projection images of the breast, is an indispensible tool in the early detection of breast cancer in women. Digital breast tomosynthesis (DBT) is a 3D imaging technique that promises higher sensitivity and specificity in breast cancer screening at a similar radiation dose to conventional two-view screening mammography. In DBT a 3D volume is reconstructed with anisotropic voxels from a limited number of x-ray projection images acquired over a limited angle.

View Article and Find Full Text PDF